

TECHNICAL UNIVERSITY OF MOMBASA

A Centre of Excellence

DEPARTMENT OF MATHEMATICS AND PHYSICS

SEPTEMBER 2018 SERIES EXAMINATION

UNIT CODE: AMA 4418 UNIT TITLE: ANALYTICAL APPLIED MATHEMATICS II

BMCS
 SPECIAL/SUPPLIMENTARY EXAMINATION

TIME ALLOWED: 2 HOURS

INSTRUCTIONTO CANDIDATES:

This paper consists of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown

QUESTION ONE (30 MARKS) COMPULSORY

a) Given that $\mathrm{n}=2$, write two equations for $y_{i}=c_{i}^{r} a_{r s} x_{s}$
b) If $\bar{A}^{p}=\frac{\partial \bar{x}^{p}}{\partial x^{q}} A^{q}$ prove that $A^{q}=\frac{\partial x^{q}}{\partial \bar{x}^{p}} \bar{A}^{q}$
c) Given that $A_{r}^{p q}$ and $B_{r}^{p q}$ are tensors, prove that their sum and difference are tensors.
d) Define an affine tensor and hence a Cartesian tensor.
e) show that $\frac{\partial A_{p}}{\partial x^{q}}$ is not a tensor even though A_{p} is a covariant tensor of rank one.
f) Consider the initial value problem;

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}+x y=1, \\
y(0)=0, y^{\prime}(0)=0
\end{gathered}
$$

Transform this initial value problem to a Volterra integral equation.
g) Define a singular integral equation.
h) A quantity $\mathrm{A}(\mathrm{j}, \mathrm{k}, \mathrm{l}, \mathrm{m})$ which is a function of coordinates x^{i} transforms to another coordinate system \bar{x}^{i} according to the rule.

$$
\bar{A}(p, q, r, s)=\frac{\partial x^{j}}{\partial \bar{x}^{p}} \frac{\partial \bar{x}^{q}}{\partial x^{k}} \frac{\partial \bar{x}^{r}}{\partial x^{l}} \frac{\partial \bar{x}^{s}}{\partial x^{m}} A(j, k, l, m)
$$

i) Write the tensor in a suitable notation.
ii) Give the contravariant and covariant order and the rank of the tensor.

QUESTION TWO (20 MARKS)

a) A_{j}^{i} is a mixed tensor of rank 2 and $B_{m}^{k l}$ is a mixed tensor of rank 3, prove that $A_{j}^{i} B_{m}^{j l}$ is a mixed tensor of rank 3.
b) Show that the expression $\mathrm{A}(\mathrm{i}, \mathrm{j}, \mathrm{k})$ is a covariant tensor of rank 3 if $A(i, j, k) B^{k}$ is covariant tensor of rank 2 and B^{k} is a contravariant vector.
c) Show that the Bessel equation

$$
\begin{gathered}
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\lambda\left(x^{2}-1\right)=0, \\
y(0)=0, y(1)=0
\end{gathered}
$$

transforms to the integral equations

$$
y(x)=\lambda \int_{0}^{1} G(x, \xi) \xi y(\xi) d \xi
$$

Where

$$
G(x, \xi)=\left\{\begin{array}{l}
\frac{x}{2 \xi}\left(1-\xi^{2}\right), x<\xi \tag{10marks}\\
\frac{\xi}{2 x}\left(1-x^{2}\right), x>\xi
\end{array}\right.
$$

QUESTION THREE (20 MARKS)

a) Find the matrix and component of first fundamental tensors in cylindrical coordinates
b) Prove that the Legendres polynomial of order three is given by

$$
\begin{equation*}
p_{3}(x)=\frac{5}{2} x^{3}-\frac{3}{2} x \tag{4marks}
\end{equation*}
$$

c) If $\mathrm{A}(\mathrm{i}, \mathrm{j}, \mathrm{k}) A^{i} B^{j} C_{k}$ is a scalar for arbitrary vectors $A^{i} B^{j} C_{k}$ show that $\mathrm{A}(\mathrm{i}, \mathrm{j}, \mathrm{k})$ is a tensor of type $(1,2)$

QUESTION FOUR (20 MARKS)

a) Consider the boundary value problem

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}+\lambda y=0 \\
y(0)=0, y(l)=0
\end{gathered}
$$

Transform this boundary value problem to a Fredholm equation of the second kind.
b) A curve in spherical coordinates x^{i} is given by $x^{1}=t x^{2}=\sin ^{-1}\left(\frac{1}{t}\right)$ and

$$
\begin{equation*}
x^{3}=2 \sqrt{t^{2}+1} . \text { find the length of arc } 1 \leq t \leq 2 \tag{8marks}
\end{equation*}
$$

c) Express interms of Legendres polynomial the function

$$
\begin{equation*}
f(x)=x^{4}-2 x^{3}+3 x^{2}+5 x-9 \tag{4marks}
\end{equation*}
$$

QUESTION FIVE (20 MARKS)

a) Given cylindrical coordinate (x^{i}) and rectangular coordinates (\bar{x}^{i}) are connectd through $\quad \bar{x}^{i}=x^{1} \cos x^{2} \quad \bar{x}^{2}=x^{1} \sin x^{2} \quad \bar{x}^{3}=x^{3}$ compute the jacobian matrix and thus compute the metric G of the Euclidean metric tensor in the x^{i} system. (8 marks)
b) Let $A_{r s t}^{p q}$ be a tensor
i) Choose $\mathrm{p}=\mathrm{t}$ and show that $A_{r s t}^{p q}$, where the summation convention is employed is a tensor and state its rank.
ii) Choose $\mathrm{p}=\mathrm{t}$ and $\mathrm{q}=\mathrm{s}$ and show similarly that $A_{r q p}^{p q}$ is a tensor and state its rank. (3marks)
c) i) Define Legendre polynomials and Legendre functions of second kind. (2marks)
ii) Prove that $P_{2}(x)=\frac{3}{2} x^{2}-\frac{1}{2}$ (3marks)

