

TECHNICAL UNIVERSITY OF MOMBASA

A Centre of Excellence

Faculty of Applied & Health Sciences

DEPARTMENT OF MATHEMATICS AND PHYSICS

SEPTEMBER 2018 SERIES EXAMINATION

UNIT CODE: AMA 4418 UNIT TITLE: ANALYTICAL APPLIED MATHEMATICS II

BMCS

SPECIAL/SUPPLIMENTARY EXAMINATION

TIME ALLOWED: 2 HOURS

INSTRUCTIONTO CANDIDATES:

This paper consists of **FIVE** questions

Answer question ONE (COMPULSORY) and any other TWO questions

Maximum marks for each part of a question are as shown

QUESTION ONE (30 MARKS) COMPULSORY

a) Given that $n = 2$, write two equations for $y_i = 0$	$c_i^r a_{rs} x_s$ (4 marks)
---	------------------------------

b) If
$$\bar{A}^p = \frac{\partial \bar{x}^p}{\partial x^q} A^q$$
 prove that $A^q = \frac{\partial x^q}{\partial \bar{x}^p} \bar{A}^q$ (3 marks)

c) Given that A_r^{pq} and B_r^{pq} are tensors, prove that their sum and difference are tensors.

(4 marks)

©Technical University of Mombasa

Page **1** of **4**

d) Define an affine tensor and hence a Cartesian tensor.

e) show that $\frac{\partial A_p}{\partial x^q}$ is not a tensor even though A_p is a covariant tensor of rank one. (3 marks) f) Consider the initial value problem;

$$\frac{d^2y}{dx^2} + xy = 1 ,$$

y(0) = 0, y'(0) = 0

Transform this initial value problem to a Volterra integral equation. (7 marks)

- g) Define a singular integral equation. (2 marks)
- h) A quantity A (j,k,l,m) which is a function of coordinates x^i transforms to another coordinate system \bar{x}^i according to the rule.

$$\overline{A}(p,q,r,s) = \frac{\partial x^{j}}{\partial \overline{x}^{p}} \frac{\partial \overline{x}^{q}}{\partial x^{k}} \frac{\partial \overline{x}^{r}}{\partial x^{l}} \frac{\partial \overline{x}^{s}}{\partial x^{m}} A(j,k,l,m)$$

- *i*) Write the tensor in a suitable notation. (2 marks)
- ii) Give the contravariant and covariant order and the rank of the tensor. (3marks)

QUESTION TWO (20 MARKS)

- a) A_j^i is a mixed tensor of rank 2 and B_m^{kl} is a mixed tensor of rank 3, prove that $A_j^i B_m^{jl}$ is a mixed tensor of rank 3. (5 marks)
- b) Show that the expression A(i,j,k) is a covariant tensor of rank 3 if $A(i,j,k)B^k$ is covariant tensor of rank 2 and B^k is a contravariant vector. (5 marks)
- c) Show that the Bessel equation

$$x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} + \lambda(x^{2} - 1) = 0,$$

$$y(0) = 0, y(1) = 0$$

transforms to the integral equations

$$y(x) = \lambda \int_{0}^{1} G(x,\xi)\xi y(\xi)d\xi$$

Where

$$G(x,\xi) = \begin{cases} \frac{x}{2\xi}(1-\xi^2), & x < \xi \\ \frac{\xi}{2x}(1-x^2), & x > \xi \end{cases}$$
(10 marks)

©Technical University of Mombasa

Page 2 of 4

(2 marks)

QUESTION THREE (20 MARKS)

- a) Find the matrix and component of first fundamental tensors in cylindrical coordinates (12 marks)
- b) Prove that the Legendres polynomial of order three is given by

$$p_3(x) = \frac{5}{2} x^3 - \frac{3}{2} x \tag{4 marks}$$

c) If $A(i,j,k)A^iB^jC_k$ is a scalar for arbitrary vectors $A^iB^jC_k$ show that A(i,j,k) is a tensor of type (1,2) (4 marks)

QUESTION FOUR (20 MARKS)

a) Consider the boundary value problem

$$\frac{d^2y}{dx^2} + \lambda y = 0 ,$$

$$y(0) = 0 , y(l) = 0$$

Transform this boundary value problem to a Fredholm equation of the second kind.

(8 marks)

b) A curve in spherical coordinates x^i is given by $x^1 = t$ $x^2 = \sin^{-1}(\frac{1}{t})$ and $x^3 = 2\sqrt{t^2 + 1}$. find the length of arc $1 \le t \le 2$ (8 marks)

c) Express interms of Legendres polynomial the function

$$f(x) = x^4 - 2x^3 + 3x^2 + 5x - 9$$
 (4 marks)

QUESTION FIVE (20 MARKS)

- a) Given cylindrical coordinate (x^i) and rectangular coordinates (\bar{x}^i) are connectd through $\bar{x}^i = x^1 cos x^2 \ \bar{x}^2 = x^1 sin x^2 \ \bar{x}^3 = x^3$ compute the jacobian matrix and thus compute the metric G of the Euclidean metric tensor in the x^i system. (8 marks)
- b) Let A_{rst}^{pq} be a tensor
- i) Choose p = t and show that A_{rst}^{pq} , where the summation convention is employed is a tensor and state its rank. (4marks)
- ii) Choose p=t and q=s and show similarly that A_{rqp}^{pq} is a tensor and state its rank. (3marks)

c) i) Define Legendre polynomials and Legendre functions of second kind. (2marks)

ii) Prove that
$$P_2(x) = \frac{3}{2}x^2 - \frac{1}{2}$$
 (3marks)