

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES DEPARTMENT OF MATHEMATICS & PHYSICS **UNIVERSITY EXAMINATION FOR:** BMCS YEAR IV SEMESTER I AMA 4414: FIELD THEORY SPECIAL/ SUPPLIMENTARY EXAMINATIONS **SERIES: September 2018 TIME:** 2HOURS **DATE: September 2018**

ANSWER QUESTION ONE AND ANY OTHER TWO QUESTIONS

QUESTION ONE (30 MARKS)

a)

b)

c)

(i) Define a conjugate element	(2 Marks)		
(ii) Find all the conjugate of each of the given elements over the given fields			
1. $3 + \sqrt{2}$ over \mathbb{Q}	(2 Marks)		
2. $\sqrt{2} + i$ over \mathbb{R}	(2 Marks)		
3. $\sqrt{1+\sqrt{2}}$ over $\mathbb{Q}\sqrt{2}$	(2 Marks)		
(i) What is a primitive n^{th} root of unity?	(2 Marks)		
(ii) Find the primitive 5^{th} root of unity in \mathbb{Z}_{11}	(6 Marks)		
For each of the given polynomial in $\mathbb{Q}[x]$. Find the degree over \mathbb{Q} of the splitting field			
over \mathbb{Q} of the polynomial;			

AA

	(i) <i>x</i>	$x^2 + 3$	(3 Marks)
	(ii)	$x^{3} - 1$	(4 Marks)
d)			
	(i)	Define a zero divisor	(1 Mark)
	(ii)	Outline the zero divisors in \mathbb{Z}_6	(1 Mark)
e)	Prove	that if $f \in \mathbb{Z}[x]$ is monic, then every monic factor of f is in $\mathbb{Q}[x]$	lies in $\mathbb{Z}[x]$
			(5 Marks)

QUESTION TWO (20 MARKS)

a)	State and prove Eisenstein's criterion	(7 Marks)
b)		
	(i) Define an algebraic extension	(2 Marks)
	(ii) Prove that a field extension E/F is finite if and only if E is algebraic	and finitely
	generated (as a field) over F.	(7 Marks)
c)	Prove that if P is prime, then $x^{p-1} + \dots + 1$ is irreducible: hence $\mathbb{Q}\left[e^{\frac{2\pi i}{p}}\right]$	nas a degree
	$p-1$ over \mathbb{Q}	(4 Marks)

QUESTION THREE (20 MARKS)

©Technical University of Mombasa

- a) Prove that ∝ = ∑ 1/(2^{n!}) is transcendental (7 Marks)
 b) Prove that if E is a field extension of F, we may view E as a vector space over F. (7 Marks)
- c) For each of the following $a \in \mathbb{C}$, show that \propto is algebraic over F.
 - (i) $1 + \sqrt{2}$ (3 Marks)
 - (ii) 1+i (3 Marks)

QUESTION FOUR (20 MARKS)

- a)
- (i) Define a splitting polynomial (3 Marks) (ii) Let *E* be an extension field of F and $\propto \in E$. State what is meant by \propto is algebraic over F. (2 Marks) b) Prove that if E is a finite field of characteristic p, then E contains exactly p^n elements for $n \in \mathbb{Z}^+$. (4 Marks) c) Find the degree over \mathbb{Q} and the splitting fields of; (i) $x^4 - 1$ (3 Marks) (ii) $(x^2 - 2)(x^2 - 3)$ (3 Marks) d) Find the degree and basis of; (i) $\mathbb{Q}\sqrt{2}$ over \mathbb{Q} (2 Marks)
 - (ii) $\mathbb{Q}(\sqrt{2}, \sqrt[3]{2})$ over \mathbb{Q} (3 Marks)

QUESTION FIVE (20 MARKS)

aGiven the degree of each of the following©Technical University of Mombasa3

(i)
$$\mathbb{Q}(\sqrt{2}, \sqrt{6} + \sqrt{10})$$
 over $\mathbb{Q}(\sqrt{3} + \sqrt{5})$ (1 Mark)

(i)
$$\mathbb{Q}(\sqrt{2},\sqrt{6}+\sqrt{10})$$
 over $\mathbb{Q}(\sqrt{3}+\sqrt{5})$ (1 Mark)
(ii) $\mathbb{Q}(\sqrt{2},\sqrt{3})$ over $\mathbb{Q}(\sqrt{2}+\sqrt{3})$ (1 Mark)

(iii)
$$\mathbb{Q}(\sqrt{2},\sqrt{3})$$
 over $\mathbb{Q}(\sqrt{3})$ (1 Mark)

b) Which of the following is a field?

(i)
$$F = \{a + bi \mid a, b \in \mathbb{Q}\}$$
 and $i = \sqrt{-1}$ (4 Marks)

(ii)
$$F = \{a + bi \mid a, b \in \mathbb{Z}\}$$
 and $i = \sqrt{-1}$ (3 Marks)

c) State and prove the Euclid's algorithm (10 Marks)