AA

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES
 DEPARTMENT OF MATHEMATICS \& PHYSICS
 UNIVERSITY EXAMINATION FOR:
 BMCS YEAR IV SEMESTER I
 AMA 4414: FIELD THEORY
 SPECIAL/ SUPPLIMENTARY EXAMINATIONS
 SERIES: September 2018
 TIME: 2HOURS
 DATE: September 2018

ANSWER QUESTION ONE AND ANY OTHER TWO QUESTIONS

QUESTION ONE (30 MARKS)

a)
(i) Define a conjugate element
(ii) Find all the conjugate of each of the given elements over the given fields

1. $3+\sqrt{2}$ over \mathbb{Q}
(2 Marks)
2. $\sqrt{2}+i$ over \mathbb{R}
3. $\sqrt{1+\sqrt{2}}$ over $\mathbb{Q} \sqrt{2}$
b)
(i) What is a primitive $n^{\text {th }}$ root of unity?
(ii) Find the primitive $5^{\text {th }}$ root of unity in \mathbb{Z}_{11}
c) For each of the given polynomial in $\mathbb{Q}[x]$. Find the degree over \mathbb{Q} of the splitting field over \mathbb{Q} of the polynomial;
(i) $x^{2}+3$
(3 Marks)
(ii) $x^{3}-1$
(4 Marks)
d)
(i) Define a zero divisor
(ii) Outline the zero divisors in \mathbb{Z}_{6}
e) Prove that if $f \in \mathbb{Z}[x]$ is monic, then every monic factor of f is in $\mathbb{Q}[x]$ lies in $\mathbb{Z}[x]$

QUESTION TWO (20 MARKS)

a) State and prove Eisenstein's criterion
b)
(i) Define an algebraic extension
(ii) Prove that a field extension E / F is finite if and only if E is algebraic and finitely generated (as a field) over F .
c) Prove that if P is prime, then $x^{p-1}+\cdots+1$ is irreducible: hence $\mathbb{Q}\left[e^{\frac{2 \pi i}{p}}\right]$ has a degree $p-1$ over \mathbb{Q} (4 Marks)
a) Prove that $\alpha=\sum \frac{1}{2^{n!}}$ is transcendental
b) Prove that if E is a field extension of F , we may view E as a vector space over F .
c) For each of the following $a \in \mathbb{C}$, show that \propto is algebraic over F .
(i) $1+\sqrt{2}$
(ii) $1+i$
(3 Marks)

QUESTION FOUR (20 MARKS)

a)
(i) Define a splitting polynomial
(ii) Let E be an extension field of F and $\propto \in E$. State what is meant by α is algebraic over F.
b) Prove that if E is a finite field of characteristic p, then E contains exactly p^{n} elements for $n \in \mathbb{Z}^{+}$.
c) Find the degree over \mathbb{Q} and the splitting fields of;
(i) $x^{4}-1$
(ii) $\left(x^{2}-2\right)\left(x^{2}-3\right)$
(3 Marks)
d) Find the degree and basis of;
(i) $\mathbb{Q} \sqrt{2}$ over \mathbb{Q}
(ii) $\mathbb{Q}(\sqrt{2}, \sqrt[3]{2})$ over \mathbb{Q}

QUESTION FIVE (20 MARKS)

a Given the degree of each of the following
(i) $\mathbb{Q}(\sqrt{2}, \sqrt{6}+\sqrt{10})$ over $\mathbb{Q}(\sqrt{3}+\sqrt{5})$
(ii) $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ over $\mathbb{Q}(\sqrt{2}+\sqrt{3})$
(iii) $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ over $\mathbb{Q}(\sqrt{3})$
b) Which of the following is a field?
(i) $\quad F=\{a+b i \mid a, b \in \mathbb{Q}\}$ and $i=\sqrt{-1}$
(ii) $\quad F=\{a+b i \mid a, b \in \mathbb{Z}\}$ and $i=\sqrt{-1}$
c) State and prove the Euclid's algorithm

