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QUESTION ONE (30 Marks) 

a) Find the roots of   325 z       [6 Marks] 

 

b) Evaluate 
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c) Discus the continuity of  
iz

zzzz
zf






52823 234

    [4 Marks] 

d) For the arc C  and the function f , find the value of  dzzf
C given that C is a 

contour and f is continuous on C  if    
z

z
zf

2
  and C  is the semicircle iez 2  

for  2         [6 Marks] 

e) Use Cauchy’s integral formula to evaluate 
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 [5 Marks] 



f) Evaluate dzz
C from 0z  to iz 24   along the curve C given by ittz  2  

          [6 Marks] 

 

 

QUESTION TWO (20 Marks) 

a) Find the singularities and the corresponding residues of the 

function  
 2222 


zzz

e
zf

z

      [11 Marks] 

 

b) Use residues to evaluate  
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QUESTION THREE (20 Marks) 

a) Evaluate   345327 ii        [2 Marks] 

 

b) Show that the multiplicative inverse of the complex number  yxz ,  is 
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. Hence or otherwise find the inverse of iz 43 [10 Marks] 

c) Solve for the real values of x  and y in the equation i
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QUESTION FOUR (20 Marks) 

a) Show that under the transformation
z

w
1

 , the images of the lines 1 xy and 0y  

are the circles 022  vuvu and 0v respectively. Sketch the two pairs of 

curves and verify the conformality of the mapping at 1z   [12 Marks] 

 

b) Find the Laurent series of 
  21  zz

z
 about 2z    [8 Marks] 

 

 

 

QUESTION FIVE (20 Marks) 

a) Show by De Moivre’s theorem that




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
    [8 Marks]  

b) Suppose that tbitaz  sincos   (where ,, ba are positive constants, ba  ) is 

the position vector of a particle moving on a curve C and that t  is the time. 

i. Determine the velocity and speed of the particle at any time  [2 Marks] 



ii. Determine the acceleration both in magnitude and direction at any time.               

                                         [2 Marks] 

iii. Prove that z
dt

zd 2

2

2

 and give a physical interpretation  [3 Marks] 

iv. Determine where the velocity and acceleration have the greatest and least 

magnitudes.       [6 Marks] 

 

     


