

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES
DEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR:
BACHELOR OF TECHNOLOGY IN APPLIED PHYSICS / BACHELOR OF TECHNOLOGY IN RENEWABLE ENERGY
AMA 4401: COMPLEX ANALYSIS
SPECIAL/ SUPPLIMENTARY EXAMINATIONS
SERIES: September 2018
TIME: 2 HOURS
DATE: September 2018

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions. Attempt QUESTION ONE and ANY OTHER TWO QUESTIONS
Do not write on the question paper.

QUESTION ONE (30 Marks)

a) Find the roots of $z^{5}=-32$
[6 Marks]
b) Evaluate $\lim _{z \rightarrow-i} \frac{z+i}{z^{2}+1}$
[3 Marks]
c) Discus the continuity of $f(z)=\frac{3 z^{4}+2 z^{3}+8 z^{2}+2 z+5}{z+i} \quad$ [4 Marks]
d) For the arc C and the function f, find the value of $\oint_{C} f(z) d z$ given that C is a contour and f is continuous on C if $f(z)=\frac{z+2}{z}$ and C is the semicircle $z=2 e^{i \theta}$ for $\pi \leq \theta \leq 2 \pi$
[6 Marks]
e) Use Cauchy's integral formula to evaluate $\oint_{C} \frac{e^{2 z}}{(z+1)^{3}} d z \quad C:|z|=1 \quad$ [5 Marks]
f) Evaluate $\int_{C} \bar{z} d z$ from $z=0$ to $z=4+2 i$ along the curve C given by $z=t^{2}+i t$ [6 Marks]

QUESTION TWO (20 Marks)

a) Find the singularities and the corresponding residues of the function $f(z)=\frac{e^{z}}{z^{2}\left(z^{2}+2 z+2\right)}$
[11 Marks]
b) Use residues to evaluate $\int_{0}^{2 \pi} \frac{d \theta}{5+4 \cos \theta}$
[9 Marks]

QUESTION THREE (20 Marks)

a) Evaluate $(7+2 i \sqrt{3})(5-4 i \sqrt{3})$
b) Show that the multiplicative inverse of the complex number $z=(x, y)$ is $\left(\frac{x}{x^{2}+y^{2}}, \frac{-y}{x^{2}+y^{2}}\right)$. Hence or otherwise find the inverse of $z=3-4 i$ [10 Marks]
c) Solve for the real values of x and y in the equation $\left(\frac{1+i}{1-i}\right)^{2}+\frac{1}{x+i y}=1+i$ [8Marks]

QUESTION FOUR (20 Marks)

a) Show that under the transformation $w=\frac{1}{z}$, the images of the lines $y=x-1$ and $y=0$ are the circles $u^{2}+v^{2}-u-v=0$ and $v=0$ respectively. Sketch the two pairs of curves and verify the conformality of the mapping at $z=1$
[12 Marks]
b) Find the Laurent series of $\frac{z}{(z+1)(z+2)}$ about $z=-2$

QUESTION FIVE (20 Marks)

a) Show by De Moivre's theorem that $\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$
b) Suppose that $z=a \cos \omega t+b i \sin \omega t$ (where a, b, ω are positive constants, $a>b$) is the position vector of a particle moving on a curve C and that t is the time.
i. Determine the velocity and speed of the particle at any time [2 Marks]
ii. Determine the acceleration both in magnitude and direction at any time.
[2 Marks]
iii. Prove that $\frac{d^{2} z}{d t^{2}}=-\omega^{2} z$ and give a physical interpretation [3 Marks] iv. Determine where the velocity and acceleration have the greatest and least magnitudes.
[6 Marks]

