
 TECHNICAL UNIVERSITY OF MOMBASA
 A Centre of Excellence

 DEPARTMENT OF MATHEMATICS AND PHYSICS
 SERIES: September 2018

 AMA 4321: ANALYTICAL APPLIED MATHEMATICS 1

 AMA 4321: ANALYTICAL APPLIED MATHEMATICS 1

 BMCS

 BMCS}

TIME ALLOWED: 2HOURS

INSTRUCTIONTO CANDIDATES:
You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consists of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown

QUESTION ONE (30 MARKS) COMPULSORY

a. (i) Define a linear second order differential equation.
(2 mk)
(ii) Solve the differential equation using D operator method
(7 mks)
b. Determine the Laplace transform of $\sin ^{2} t$
c. Determine the Legendre polynomial using the solution of Legendre equation given by

$$
\begin{aligned}
& y=a_{0}\left\{1-\frac{k(k+1)}{2!} x^{2}+\frac{k(k+1)(k-2)(k+3)}{4!} x^{4} \ldots \ldots\right\}+a_{1}\left\{x-\frac{(k-1)(k+2)}{3!} x^{3}+\right. \\
& \left.\frac{(k-1)(k-3)(k+2)(k+4)}{5!} x^{5} \ldots \ldots .\right\}
\end{aligned}
$$

d. Verify that $\varnothing(x, y, z)=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}$ satisfies the partial differential equation $\frac{\partial^{2} \emptyset}{\partial x^{2}}+$ $\frac{\partial^{2} \emptyset}{\partial y^{2}}+\frac{\partial^{2} \emptyset}{\partial z^{2}}=0$
e. Obtain a Fourier series for the periodic function $\mathrm{f}(\mathrm{x})$ defined as $f(x)=\left\{\begin{array}{c}-k,-\pi<x<0 \\ +k, 0<x<\pi\end{array}\right.$

QUESTION TWO (20 MARKS)

a. Find (i) $\frac{\partial^{2} z}{\partial y^{2}}$
(ii) $\frac{\partial^{2}}{\partial x} \frac{z}{\partial y}$ Given $z=4 x^{2} y^{3}+7 y^{2}+2$
b. A metal bar insulated along its sides is 1 meter long. It is initially at room temperature of $15^{\circ} \mathrm{c}$ and at time $\mathrm{t}=0$, the ends are placed into ice at $0^{\circ} \mathrm{c}$. Find an expression for the temperature at a point p at a distance x meters from one end at any time t seconds after $\mathrm{t}=0$.
c. Determine the Legendre polynomial $p_{3}(x)$ using the Rodrigue's formula
d. Solve the partial differential equation by direct partial integration

$$
\begin{equation*}
\frac{\partial^{2}}{\partial x} \frac{u}{\partial y}=\cos (x+y) \text { given } \frac{\partial y}{\partial x}=2 \text { when } y=0 \text { and } u=y^{2} \text { when } x=0 \tag{4mks}
\end{equation*}
$$

QUESTION THREE (20 MARKS)

a. In the figure below is a stretched string of length 50 cm which is set oscillating by displacing its midpoint a distance of 2 cm from its rest position and releasing it with zero velocity. Solve the formed equation by method of separating the variables.

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}} \text { Where } c^{2}=1, \text { to determine the resulting motion } u(x, t) \quad(10 \mathrm{mks})
$$

b. Find the power series solution of the Bessel equation given by

$$
\begin{equation*}
x^{2} \frac{d y}{d x}+x \frac{d y}{d x}+\left(x^{2}-v^{2}\right) y=0 \text { in terms of } J_{v}(x) \text { and } J_{-v}(x) \tag{10mks}
\end{equation*}
$$

QUESTION FOUR (20 MARKS)

a. (i) Determine the Fourier Series for the function $f(\theta)=\theta^{2}$ in the range $-\pi<\theta<\pi$. The function has a period of 2π.
(ii) If $\theta=\pi$, show that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$
b. Solve the partial differential equation by direct integration method

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial x^{2}}=6 x^{2}(2 y-1) \text { Given the boundary conditions that at } x=0 \frac{\partial u}{\partial x}=\sin 2 y \text { and } u= \\
& \cos y \\
& (6 \mathrm{mks})
\end{aligned}
$$

c. Solve the given second order linear differential equation

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+2 Y=3 e^{x} \cos 2 x \text { Given that when } x=0 y=2 \text { and } \frac{d y}{d x}=3 \tag{6mks}
\end{equation*}
$$

QUESTION FIVE (20 MARKS)

a. A square plate is bounded by the lines $x=0, y=0, x=1$ and $y=1$. apply the Laplace equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ to determine the potential distribution $u(x, y)$ over the plate subject to the boundary conditions.

$$
\begin{array}{ll}
U=0 \text { when } x=0 & 0 \leq y \leq 1 \\
U=0 \text { when } x=1 & 0 \leq y \leq 1 \\
U=0 \text { when } y=0 & 0 \leq x \leq 1 \\
U=4 \text { when } y=0 & 0 \leq x \leq 1 \tag{10mks}
\end{array}
$$

b. (i) Find the Laplace Transform of $3 \sin (\omega t+\propto)$. where ω and \propto are constants (3 mks)
(ii) use Laplace Transform to solve the differential equation

$$
\frac{d^{2} y}{d x^{2}}+6 \frac{d y}{d x}+13 y=0 \text { given that when } x=0 y=3 \text { and } \frac{d y}{d x}=7 \quad \text { (7 mks) }
$$

