

TECHNICAL UNIVERSITY OF MOMBASA

A Centre of Excellence

Faculty of Applied & Health Sciences

DEPARTMENT OF MATHEMATICS AND PHYSICS

SERIES: September 2018

AMA 4321: ANALYTICAL APPLIED MATHEMATICS 1

BMCS

TIME ALLOWED: 2HOURS

INSTRUCTIONTO CANDIDATES:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consists of **FIVE** questions

Answer question ONE (COMPULSORY) and any other TWO questions

Maximum marks for each part of a question are as shown

QUESTION ONE (30 MARKS) COMPULSORY

a. (i) Define a linear second order differential equation. (2 mk) (ii) Solve the differential equation using D operator method (7 mks) b. Determine the Laplace transform of sin^2t (4 mks) c. Determine the Legendre polynomial using the solution of Legendre equation given by $y = a_0 \left\{ 1 - \frac{k(k+1)}{2!} x^2 + \frac{k(k+1)(k-2)(k+3)}{4!} x^4 \dots \right\} + a_1 \left\{ x - \frac{(k-1)(k+2)}{3!} x^3 + \frac{(k-1)(k-3)(k+2)(k+4)}{5!} x^5 \dots \right\}$ (6 mks) d. Verify that $\phi(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$ satisfies the partial differential equation $\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial z^2} = 0$ (6 mks) e. Obtain a Fourier series for the periodic function f(x) defined as $f(x) = \begin{cases} -k, -\pi < x < 0 \\ +k, \ 0 < x < \pi \end{cases}$ (5 mks)

QUESTION TWO (20 MARKS)

a. Find (i)
$$\frac{\partial^2 z}{\partial y^2}$$
 (2 mks)

(ii)
$$\frac{\partial^2}{\partial x} \frac{z}{\partial y}$$
 Given $z = 4x^2y^3 + 7y^2 + 2$ (2 mks)

- A metal bar insulated along its sides is 1 meter long. It is initially at room temperature of 15°c and at time t=0, the ends are placed into ice at 0°c. Find an expression for the temperature at a point p at a distance x meters from one end at any time t seconds after t=0.
- c. Determine the Legendre polynomial $p_3(x)$ using the Rodrigue's formula
- d. Solve the partial differential equation by direct partial integration (5 mks)

$$\frac{\partial^2}{\partial x}\frac{u}{\partial y} = \cos(x+y) \text{ given } \frac{\partial y}{\partial x} = 2 \text{ when } y = 0 \text{ and } u = y^2 \text{ when } x = 0$$
 (4 mks)

QUESTION THREE (20 MARKS)

a. In the figure below is a stretched string of length 50 cm which is set oscillating by displacing its midpoint a distance of 2 cm from its rest position and releasing it with zero velocity. Solve the formed equation by method of separating the variables.

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}$$
 Where $c^2 = 1$, to determine the resulting motion $u(x, t)$ (10 mks)

b. Find the power series solution of the Bessel equation given by $x^{2}\frac{dy}{dx} + x\frac{dy}{dx} + (x^{2} - v^{2})y = 0 \text{ in terms of } J_{v}(x) \text{ and } J_{-v}(x)$ (10 mks)

QUESTION FOUR (20 MARKS)

a. (i) Determine the Fourier Series for the function f(θ) = θ² in the range -π < θ < π. The function has a period of 2π. (2 mks)
(ii) If θ = π, show that Σ_{n=1}[∞] 1/n² = π²/6 (6 mks)
b. Solve the partial differential equation by direct integration method

$$\frac{\partial^2 u}{\partial x^2} = 6x^2(2y - 1)$$
 Given the boundary conditions that at $x = 0$ $\frac{\partial u}{\partial x} = sin2y$ and $u = cos y$ (6 mks)

c. Solve the given second order linear differential equation

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2Y = 3e^x \cos 2x$$
 Given that when $x = 0$ $y = 2$ and $\frac{dy}{dx} = 3$ (6 mks)

QUESTION FIVE (20 MARKS)

a. A square plate is bounded by the lines x = 0, y = 0, x = 1 and y = 1. apply the Laplace equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ to determine the potential distribution u(x,y) over the plate subject to the boundary conditions.

$$U = 0 \text{ when } x = 0 \ 0 \le y \le 1$$

$$U = 0 \text{ when } x = 1 \ 0 \le y \le 1$$

$$U = 0 \text{ when } y = 0 \ 0 \le x \le 1$$

$$U = 4 \text{ when } y = 0 \ 0 \le x \le 1$$
(10 mks)

b. (i) Find the Laplace Transform of $3\sin(\omega t + \infty)$. where ω and \propto are constants (3 mks) (ii) use Laplace Transform to solve the differential equation

$$\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 13y = 0$$
 given that when $x = 0$ $y = 3$ and $\frac{dy}{dx} = 7$ (7 mks)