

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR:

BACHELOR OF SCIENCE IN MATHEMATICS AND COMPUTER SCIENCE

AMA 4316: ORDINARY DIFFERENTIAL EQUATIONS

SPECIAL/ SUPPLIMENTARY EXAMINATIONS

SERIES: SEPTEMBER 2018

TIME: 2 HOURS

DATE: SEPTEMBER 2018

Instructions to Candidates

You should have the following for this examination *-Answer Booklet, examination pass and student ID* This paper consists of FIVE questions. Attempt QUESTION ONE and any other TWO questions. **Do not write on the question paper.**

QUESTION ONE Compulsory (30 marks)

a)	Explain the following terms;	
	i) Ordinary differential equation.	(2 marks)
	ii) Degree of a differential equation.	(2 marks)
b)	Solve the initial value problem $\frac{dy}{dx} = -4xy^2$, $y(0) = 1$	(4 marks)
c)	The population growth rate of TUM is 3%. Find the population N after time t if initially the population	
	was n_o (4 marks))
d)	Find the General Solution. of $y''+y'+y=0$	(3 marks)
e)	Determine the function $F(t)$ for which $L\{F(t) = \frac{3}{5} - \frac{4e^{-s}}{s^2} + \frac{5e^{-2s}}{s^2}$	(4 marks)
f)	Use the method of undetermined coefficient to find the general soluti	on of $\frac{d^2 y}{dx^2} + \frac{14dy}{dx} + 49y = 4e^{5x}$
		(6 marks)
a)	Show that $(5r^4 + 3r^2v^2 - 2rv^3)dr + (2r^3v - 3r^2v^2 - 5v^4)dv = 0$ is exact hence solve it	

QUESTION TWO (20 marks)

b) Find:

- a) Eliminate the constants from $e^{x}(A\cos X + B\sin X)$ and obtain the differential equation.

i) A particular solution of
$$SinX \frac{dy}{dx} + y \cos x = x \sin x, y \left(\frac{\pi}{2}\right) = 2$$
 (7 marks)

ii) The general solution of
$$\frac{d^2 y}{dx^2} - \frac{6dy}{dx} + 9y = 0$$
 (4 marks)

c) Solve the initial value problem $\frac{dy}{dx} = 3x^2 + 4x + 2$ subject to y(0) = -1 (4 marks)

QUESTION THREE (20 marks)

- a) A radioactive substance decays to half its original mass after half-life. Find a relation for the half-life $\frac{t}{2}$ and the decay substance λ (7 marks) b) Solve the following equation using the method indicated i) $5\frac{dy}{dx} + 2x = 3$, $y(2) = \frac{7}{5}$ [direct integration] (4 marks)
 - ii) $y''-3y'-4y = xe^{2x}$ [undetermined coefficient] (9 marks)

QUESTION FOUR (20 Marks)

- a) A function F(t) is defined by $F(t) = 4 \quad 0 < t < 2$ = 2t 3 for 2 < tSketch the graph of the function and determine (6 marks)
- b) Solve the Bernoulli's equation $xy(1 + xy^2)\frac{dy}{dx} = 1$ (9 marks) c) The slope m of a curve is given by $m = \frac{y+3}{x+2}$. If the curve passes through the point $(\frac{1}{2}, 1)$ find its equation. (5 marks)

QUESTION FIVE (20 marks)

a) Reduce
i)
$$(3y-7x+7)dx+(7y-3x+3)dy = 0$$
 to homogenous form, hence (5 marks)

ii) Solve (i) above (8 marks)

b) Solve
$$\begin{aligned} x' &= y \\ y' &= -2x + 3y \end{aligned}$$
(7 marks)

©Technical University of Mombasa

Page 2 of 2

(5 marks)