

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES
 DEPARTMENT OF MATHEMATICS \& PHYSICS
 UNIVERSITY EXAMINATION FOR:
 UNIVERSITY EXAMINATION FOR THE FIRST SEMESTER IN THE SECOND YEAR
 OF BACHELOR OF SCIENCE IN INFORMATION TECHNOLOGY

AMA4314: REAL ANALYSIS I

SPECIAL/ SUPPLIMENTARY EXAMINATIONS

SERIES: SEPTEMBER 2018
TIME: 2HOURS
DATE: SEPTEMBER 2018

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions. Attempt question ONE (Compulsory) and any other TWO questions.
Do not write on the question paper.

QUESTION ONE (30 MARKS)
(a) Given a sequence $\left\{x_{n}\right\}$ where $x_{n}=1+\frac{1}{n}$, find the least positive integer N such that $\left|x_{n}-1\right|<\varepsilon$ for all $n>N$ if $\varepsilon=0.001$.
(3mks)
(b) Find the closure of $A_{n}=\left\{(-1)^{n} \frac{1}{n+1}: n \in \square\right\}$.
(c) Show that the set $S=\left\{1-\frac{1}{n}: n \in \square\right\}$ is bounded. Find its infimum and supremum if they exist.
(d) Show that if s is irrational, then $t=\frac{s}{s+1}$ is irrational.
(e) Show that an arbitrary union of closed sets need not be closed using the family $\left\{A_{n}=\left[\frac{1}{n}, 1\right]: n \in \square\right\}$
(f) Prove that the sequence $\left\{x_{n}\right\}$ of real numbers has a unique limit if it exists.
(g) Investigate the convergence or divergence of the series $\sum_{n=1}^{\infty}\left(\frac{-4}{5}\right)^{n}$.
(h) Show that the function $f(x)=3 x-5$ is continuous at $x=5$..
(i) For real numbers x and y show that $\sqrt{x y} \leq \frac{1}{2}(x+y)$ where $x . y>0$.

QUESTION TWO (20 MARKS)

(a) State the completeness axiom of real numbers.
(b) Use mathematical induction to prove that $n^{3}+2 n$ is divisible by 3 .
(c) Prove that $|x-y|>||x|-|y||$ for every $x, y \in \mathfrak{R}$.
(d) Let p be a prime number. Prove that \sqrt{p} is irrational.
(e) Let $\left\{A_{i}\right\}_{i=1}^{n}$ be a finite family of open sets. Show that ${ }_{i=1}^{n} A_{i}$ is open.

QUESTION THREE (20 MARKS)

(a) Define the following
(i) A convergent sequence.
(ii) Determine whether or not the series $\sum \frac{2^{n}}{n!}$ converges?
(b) (i) When is a sequence said to be Cauchy?
(ii) Show that every convergent sequence is a Cauchy sequence.
(c) Prove that the set of odd integers is countable.
(d) Use the definition of the limit of a sequence to prove that $\lim _{n \rightarrow 4} 2 x-5=3$.

QUESTION FOUR (20 MARKS)

(a) Define absolute and conditional convergence.
(b) Use the integral test to determine the convergence or divergence of $\sum_{n=1}^{\infty} \frac{n^{2}}{n^{3}+2}$.
(c) Use a suitable test of convergence to evaluate the convergence or divergence of
(i) $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{2 n^{2}+1}$.
(ii) $\sum_{n=1}^{\infty}\left(\frac{n-1}{n^{2}}\right)^{n}$.
(iii) $\quad \sum_{n=1}^{\infty} \frac{(-3)^{n}}{n!}$.
(3mks)
(iv) $\quad \sum_{n=1}^{\infty} \frac{(n+1)!}{(n+1)^{2}}$.
(3mks)

QUESTION FIVE (20 MARKS)

(a) Show that the product of two rational numbers is also rational.
(b) Let $\left\{A_{i}\right\}_{i \in \Omega}$ be an arbitrary collection of open sets. Show that $\cup A_{i}$ is open.
(c) Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be two sequences converging to x and y respectively as $n \rightarrow \infty$. Then show that $x_{n}+y_{n} \rightarrow x+y$ as $n \rightarrow \infty$.
(d) Let $S \subseteq T \subseteq \mathfrak{R}$ and $S \neq \phi$. Show that if T is bounded above then $\sup S \leq \sup T$.
(e) For any $x, y \in \mathfrak{R}^{k}$ define the function d by $d(x, y)=\sum_{i=1}^{k}\left|x_{i}-y_{i}\right|$. Show that d is a metric on \mathfrak{R}^{k}.

