

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR:

UNIVERSITY EXAMINATION FOR THE FIRST SEMESTER IN THE SECOND YEAR OF BACHELOR OF SCIENCE IN INFORMATION TECHNOLOGY

AMA4314: REAL ANALYSIS I

SPECIAL/ SUPPLIMENTARY EXAMINATIONS

SERIES: SEPTEMBER 2018

TIME: 2HOURS

DATE: SEPTEMBER 2018

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of **FIVE** questions. Attempt question ONE (Compulsory) and any other TWO questions. **Do not write on the question paper.**

QUESTION ONE (30 MARKS)

(a) Given a sequence $\{x_n\}$ where $x_n = 1 + \frac{1}{n}$, find the least positive integer N such that $|x_n - 1| < \varepsilon$ for all n > N if $\varepsilon = 0.001$.

all n > N if $\varepsilon = 0.001$. (3mks) (b) Find the closure of $A_n = \left\{ (-1)^n \frac{1}{n+1} : n \in \Box \right\}$. (3mks)

(c) Show that the set $S = \left\{ 1 - \frac{1}{n} : n \in \Box \right\}$ is bounded. Find its infimum and supremum if they exist.

(4mks)

- (d) Show that if s is irrational, then $t = \frac{s}{s+1}$ is irrational. (3mks)
- (e) Show that an arbitrary union of closed sets need not be closed using the family $\left\{A_n = \left[\frac{1}{n}, 1\right]: n \in \Box\right\}$

(f) Prove that the sequence
$$\{x_n\}$$
 of real numbers has a unique limit if it exists. (4mks)

- (g) Investigate the convergence of the series $\sum_{n=1}^{\infty} \left(\frac{-4}{5}\right)^n$. (3mks)
- (h) Show that the function f(x) = 3x 5 is continuous at x = 5. (4mks)

(i) For real numbers x and y show that
$$\sqrt{xy} \le \frac{1}{2}(x+y)$$
 where $x.y > 0$. (3mks)

QUESTION TWO (20 MARKS)

(a)	State the completeness axiom of real numbers.	(2mks)
(b)	Use mathematical induction to prove that $n^3 + 2n$ is divisible by 3.	(4mks)
(c)	Prove that $ x - y > x - y $ for every $x, y \in \Re$.	(4mks)
(d)	Let p be a prime number. Prove that \sqrt{p} is irrational.	(5mks)
(e)	Let $\{A_i\}_{i=1}^n$ be a finite family of open sets. Show that $\bigcap_{i=1}^n A_i$ is open.	(5mks)

(e) Let
$$\{A_i\}_{i=1}^{n}$$
 be a finite family of open sets. Show that $\bigcap_{i=1}^{n} A_i$ is open. (5)

QUESTION THREE (20 MARKS)

(a)	Define	Define the following				
	(i)	A convergent sequence.	(2mks)			
	(ii)	Determine whether or not the series $\sum \frac{2^n}{n!}$ converges?	(3mks)			
(b)	(i) Whe	en is a sequence said to be Cauchy?	(2mks)			
	(ii) Sho	w that every convergent sequence is a Cauchy sequence.	(4mks)			
(c)	Prove t	hat the set of odd integers is countable.	(5mks)			
(d)	Use the	e definition of the limit of a sequence to prove that $\lim_{n \to 4} 2x - 5 = 3$.	(4mks)			

QUESTION FOUR (20 MARKS)

(a)	Define absolute and conditional convergence.	(4mks	s)
(b)	Use the integral test to determine the convergence or divergence of $\sum_{n=1}^{\infty}$	$\frac{n^2}{n^3+2}.$ (4mks)	s)

(c) Use a suitable test of convergence to evaluate the convergence or divergence of

(i)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{2n^2 + 1}$$
. (3mks)

©Technical University of Mombasa

Page 2 of 3

(3mks)

(ii)
$$\sum_{n=1}^{\infty} \left(\frac{n-1}{n^2}\right)^n.$$
 (3mks)

(iii)
$$\sum_{n=1}^{\infty} \frac{(-3)^n}{n!}$$
. (3mks)

(iv)
$$\sum_{n=1}^{\infty} \frac{(n+1)!}{(n+1)^2}$$
. (3mks)

QUESTION FIVE (20 MARKS)

- (a) Show that the product of two rational numbers is also rational. (3mks)
- (b) Let $\{A_i\}_{i\in\Omega}$ be an arbitrary collection of open sets. Show that $\cup A_i$ is open. (4mks)
- (c) Let $\{x_n\}$ and $\{y_n\}$ be two sequences converging to x and y respectively as $n \to \infty$. Then show that $x_n + y_n \to x + y$ as $n \to \infty$. (4mks)
- (d) Let $S \subseteq T \subseteq \Re$ and $S \neq \phi$. Show that if *T* is bounded above then $\sup S \leq \sup T$. (3mks)
- (e) For any $x, y \in \Re^k$ define the function *d* by $d(x, y) = \sum_{i=1}^k |x_i y_i|$. Show that *d* is a metric on \Re^k .

(6mks)