

TECHNICAL UNIVERSITY OF MOMBASA

UNIVERSITY EXAMINATIONS 2017/2018

EXAMINATION FOR THE DEGREE OF BACHELOR OF TECHNOLOGY IN ELECTICAL ENGINEERING

AMA 4263 ENGINEERING MATHEMATICS II
SPECIAL/ SUPPLIMENTARY EXAMINATIONS SERIES: SEPTEMBER 2018

DATE: DECEMBER 2017

DURATION: 2 HOURS
INSTRUCTIONS: ANSWER QUESTION ONE AND ANY OTHER TWO

QUESTION ONE (30 MARKS)

(a.) Define what interpolation.
(b.) Explain the two methods:
(i.) Lagrange interpolation
(ii.) Newton's divided differences
(c.) Evaluate $\int_{0}^{1} \frac{4 d x}{1+x^{2}}$ with five ordinates by using
(i.) Trapezoidal rule
(ii.) Simpson's rule
(d.) Find an interpolating polynomial for the data points $(0,1),(2,2)$, and $(3,4)$, using Lagrange interpolation. Find $\mathrm{P}(1.8)$.
(e.) Use divided differences to find the interpolating polynomial passing through the points $(0,1),(1,0),(2,2),(3,4)$.
(f.) Use Romberg integration to compute $\mathrm{R}_{3,3}$ for $\int_{0}^{\pi} \sin x d x$.

Question TWO

(a.) Solve $\int_{0}^{2} f(x) d x$ when $f(\mathrm{x})$ is
(i.) $\left(1+x^{2}\right)^{1 / 2}$ using Trapezoidal rule
(3 Marks)
(ii.) $(1+x)^{-1}$ using Simpson's $1 / 3$ rule
(3 Marks)
(iii.) e^{x}
(b.) Determine values of h that will ensure an approximation error of less than 0.00002 when approximating $\int_{0}^{\pi} \sin x d x$ employing
(i.) Composite Trapezoidal rule and
(ii.) Composite Simpson's rule.
(c.) The following is a table of values for $f(x)=\tan x$,

x	1	1.1	1.2	1.3
$\tan \mathrm{x}$	1.5574	1.9648	2.5722	3.6021

Use linear interpolation to estimate \tan (1.15).
(4 Marks)

Question THREE

(a.) Use the Runge-Kutta method of order four with $\mathrm{h}=0.2, \mathrm{~N}=5$, and $\mathrm{t}_{i}=0.2 i$ to obtain approximations to the solution of the initial-value problem:

$$
y^{\prime}=y-t^{2}+1,0 \leq t \leq 2, y(0)=0.5 \text {. }
$$

(10 Marks)
(b.) Use the Adams Bashforth fourth-order predictor-corrector method with $\mathrm{h}=$ 0.2 and starting values from the Runge-Kutta fourth order method to solve the initial-value problem

$$
\begin{equation*}
y^{\prime}=y-t^{2}+1,0 \leq t \leq 2, y(0)=0.5 . \tag{10Marks}
\end{equation*}
$$

Question FOUR

(a.) Prepare a Newton's divided difference table for the polynomials of each degree $0 \leq \mathrm{d} \leq 5$ which pass through the points $(-1,-5),(0,-1),(2,1)$, and (3, 11)?
(5 Marks)
(b.) Let $f(\mathrm{x})=\cos \mathrm{x}, \mathrm{x}_{0}=0.2, \mathrm{x}_{1}=0.3, \mathrm{x}_{2}=0.4$. Compute $\mathrm{f}\left[\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{2}\right] .(5$ Marks)
(c.) Obtain a numerical solution, using Euler's method of differential equation $\frac{d y}{d x}=y-x$ With the initial conditions that at $\mathrm{x}=0, \mathrm{y}=2$, for the range $\mathrm{x}=0(0.1)$ 0.5 .

Question FIVE

a) Given $x_{0}=3$, find a root of $x^{3}-3 x-5=0$ correct to 3 decimal places using the Newton-Raphson method
(b.) Using Taylor's series, find the solution of the differential equation

$$
x y^{\prime}=x-y, y(2)=2 \text { at } x=2.1 \text { correct to } 5 \text { decimal places. }
$$

(7 Marks)
(c.) Consider the function $f(x)=\cos x-x=0$. Approximate a root of $f(x)$ using
(i.) a fixed-point method, and
(ii.) Newton-Raphson's Method
(3 Marks)

