

TECHNICAL UNIVERSITY OF MOMBASA

UNIVERSITY EXAMINATIONS 2017/2018

EXAMINATION FOR THE DEGREE OF BACHELOR OF TECHNOLOGY IN ELECTICAL ENGINEERING

AMA 4263 ENGINEERING MATHEMATICS II

SPECIAL/ SUPPLIMENTARY EXAMINATIONS SERIES: SEPTEMBER 2018

DATE: DECEMBER 2017 DURATION: 2 HOURS

INSTRUCTIONS: ANSWER QUESTION ONE AND ANY OTHER TWO

QUESTION ONE (30 MARKS)

(a.) Define what interpolation.		
(b.) Explain the two methods:		
(i.) Lagrange interpolation	(2 Marks)	
(ii.) Newton's divided differences	(2 Marks)	
(c.) Evaluate $\int_{0}^{1} \frac{4dx}{1+x^2}$ with five ordinates by using		
(i.) Trapezoidal rule	(4 Marks)	
(ii.) Simpson's rule	(4 Marks)	
(d.) Find an interpolating polynomial for the data points $(0, 1)$, $(2, 2)$, using Lagrange interpolation. Find P(1.8).	and (3, 4), (4 Marks)	

(e.) Use divided differences to find the interpolating polynomial pas	ssing through
the points (0, 1), (1, 0), (2, 2), (3, 4).	(4 Marks)
(f.) Use Romberg integration to compute $R_{3,3}$ for $\int_0^{\pi} \sin x dx$.	(6 marks)
Question TWO	

(a.) Solve $\int_{0}^{2} f(x) dx$ when f(x) is (i.) $(1 + x^2)^{1/2}$ using Trapezoidal rule (3 Marks) (ii.) $(1 + x)^{-1}$ using Simpson's 1/3 rule (3 Marks) (iii.) e^x (2 Marks)

(b.) Determine values of h that will ensure an approximation error of less than 0.00002 when approximating $\int_0^{\pi} \sin x dx$ employing

(i.) Composite Trapezoidal rule and	(4 Marks)
-------------------------------------	-----------

- (ii.) Composite Simpson's rule.
- (c.) The following is a table of values for $f(x) = \tan x$,

X	1	1.1	1.2	1.3
tan x	1.5574	1.9648	2.5722	3.6021

Use linear interpolation to estimate $\tan(1.15)$.

Question THREE

(a.) Use the Runge-Kutta method of order four with h = 0.2, N = 5, and $t_i = 0.2i$ to obtain approximations to the solution of the initial-value problem:

$$y' = y - t^2 + 1, 0 \le t \le 2, y(0) = 0.5$$
. (10 Marks)

(b.) Use the Adams Bashforth fourth-order predictor-corrector method with h =0.2 and starting values from the Runge-Kutta fourth order method to solve the initial-value problem

$$y' = y - t^2 + 1, 0 \le t \le 2, y(0) = 0.5$$
. (10 Marks)

(4 Marks)

(4 Marks)

Question FOUR

(a.) Prepare a Newton's divided difference table for the polynomials of each degree $0 \le d \le 5$ which pass through the points (-1, -5), (0, -1), (2, 1), and (3, 11)? (5 Marks)

(b.) Let $f(x) = \cos x$, $x_0 = 0.2$, $x_1 = 0.3$, $x_2 = 0.4$. Compute $f[x_0, x_1, x_2]$.(5 Marks)

(c.) Obtain a numerical solution, using Euler's method of differential equation

 $\frac{dy}{dx} = y - x$ With the initial conditions that at x = 0, y = 2, for the range x=0 (0.1) 0.5. (10 Marks)

Question FIVE

a) Given $x_0 = 3$, find a root of $x^3 - 3x - 5 = 0$ correct to 3 decimal places using the Newton-Raphson method (6 Marks)

(b.) Using Taylor's series, find the solution of the differential equation

xy' = x - y, y(2) = 2 at x = 2.1 correct to 5 decimal places. (7 Marks)

- (c.) Consider the function $f(x) = \cos x x = 0$. Approximate a root of f(x) using
- (i.) a fixed-point method, and (4 Marks)
- (ii.) Newton-Raphson's Method (3 Marks)