

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR:

BACHELOR OF SCIENCE IN MATHEMATICS AND COMPUTER SCIENCE

AMA 4313: NUMERICAL ANALYSIS I

SPECIAL/ SUPPLIMENTARY EXAMINATIONS

SERIES: SEPTEMBER 2018

TIME: 2 HOURS

DATE: SEPTEMBER 2018

Instructions to Candidates

You should have the following for this examination *-Answer Booklet, examination pass and student ID* This paper consists of FIVE questions. Attempt QUESTION ONE and any other TWO questions. **Do not write on the question paper.**

QUESTION ONE Compulsory (30 marks)

a) Define the term interpolation

(2 marks)

b) From the following table, find f(84) using Newton's interpolation formula

X	60	70	80	90
f(x)	226	250	276	304
(5 marks)				

c) Use Lagrange's interpolation formula to find x when y = 7 from the following table

ſ	Х	1	3	4
	у	4	12	19

(5 marks)

d) Evaluate
$$\int_{0}^{6} \frac{1}{1+x^2} dx$$
 using Simpson's $\frac{1}{3}$ rule, n = 6 (4 marks)

©Technical University of Mombasa

e) Given
$$\frac{dy}{dx} = 1 + xy$$
, $y(0) = 1$, compute $y(0.1)$, correct to 4 decimal places using Taylor's

f) Use Newton's Raphson method and 3 iterations to obtain the smallest positive root of $f(x) = x^2 - 5x + 2 = 0$ correct to 3 decimal places (5 marks)

Let E, ∇ and Δ be shift, backward difference and forward difference operators respectively. Prove that **g**) $E^{-1} = 1 - \nabla$ (3 marks)

QUESTION TWO (20 marks)

a) Construct the backward difference table from the data $Sin \ 30^{\circ} = 0.5$, $Sin \ 35^{\circ} = 0.5736$, $Sin \ 40^{\circ} = 0.6428$, $Sin \ 45^{\circ} = 0.7071$. Assuming the 3rd difference to be constant, find the value of $Sin 25^{\circ}$ (8 marks)

b) Prove that
$$\left(\frac{\Delta^2}{E}\right)e^x \times \frac{Ex^2}{\Delta^2 e^x} = e^x$$
 (7 marks)

c) Given that ;

Х	1	2	3	4	5
У	2	5	10	17	26

Find the value of $\nabla^2 y_5$

QUESTON THREE (20 marks)

Find the first and second derivatives of the following tabulated function at the point x = 1.5a)

X	1.5	2	2.5	3	3.5	4
f(x)	3.375	7.0	13.625	24.0	38.875	59.0
	(10marks)					

Use Newton's method to find a polynomial p(x) of lowest possible degree such that $p(n) = 2^n$ for b) n = 0, 1, 2, 3, 4(7 marks)

(5marks)

Х	1	2	4	7	12
f(x)	22	30	82	106	216

(3marks)

QUESTION FOUR (20 marks)

- a) Using Adam's- Bashforth method find y(1.4) given $y' = x^2(1+y)$, y(1) = 1, y(1.1) = 1.233, y(1.2) = 1.548and y(1.3) = 1.979 (9 marks)
- b) Given $y' = x^2 y$, y(0) = 1, find y(0.1), y(0.2) using Runge kutta method of order two
- c) Define the terms argument and entry. (9 marks) (2 marks)

QUESTION FIVE (20 marks)

- a) Use the method of iteration to find the root of the equation $x^3 5x 11$ starting with $x_0 = 3$
- (8 marks) b) Solve the differential equation $\frac{dy}{dx} = x + y$, y(1) = 0 by Taylor's series expansion to obtain y(0.1)(6 marks) c) Use Romberg method to compute $\int_{0}^{1} \frac{dx}{1+x}$ correct to 4 decimal places given
 - $I(h) = 7084, \quad I(h/2) = 0.6970, I(h/4) = 0.6941$ (6 marks)