

TECHNICAL UNIVERSITY OF MOMBASA

A Centre of Excellence

Faculty of Applied & Health Sciences

DEPARTMENT OF MATHEMATICS AND PHYSICS

SEPTEMBER 2018 SERIES EXAMINATION

UNIT CODE: AMA 4250 UNIT TITLE: ALGEBRA II

BTME/BTMA

SPECIAL/SUPPLIMENTARY EXAMINATION

TIME ALLOWED: 2HOURS

INSTRUCTIONTO CANDIDATES:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consists of **FIVE** questions

Answer question ONE (COMPULSORY) and any other TWO questions

Maximum marks for each part of a question are as shown

QUESTION ONE (30 MARKS COMPULSORY)

- **a)** Find the inverse of the matrix M where M = $\begin{pmatrix} 3 & 2 \\ 2 & 5 \end{pmatrix}$ and hence solve the matrix equation MX = C in which X = $\begin{pmatrix} x \\ y \end{pmatrix}$ and C= $\begin{pmatrix} 10 \\ 3 \end{pmatrix}$. (5 marks) (2 marks)
- **b)** Convert C9₁₆ in hexadecimal to its decimal equivalent.

©Technical University of Mombasa

Page 1 of 4

d) Find the equation of the plane passing through (3, -1, 7) and perpendicular to the vector a = (4, 2, -5).
 (4 marks)

e) Let
$$\mathbf{u} = 2i - 3j + 4k$$
, $\mathbf{v} = 3i + j - 2k$ and $\mathbf{w} = i + 5j + 3k$.
Find;
 $2u - 3v + 4w$. (3 marks)

- f) Find u.v where u = (2, -5, 6) and v = (8, 2, -3). (3 marks)
- g) If A = 3i 2j + 4k and B = 2i 3j 2k. Find $A \times B$. (3 marks)

h) Find x for which
$$\begin{vmatrix} x & 3 \\ 2 & (2x+1) \end{vmatrix} = 4$$
 (4 marks)

i) Evaluate
$$\begin{vmatrix} 1 & 4 & -3 \\ -5 & 2 & 6 \\ -1 & -4 & 2 \end{vmatrix}$$
 (3 marks)

QUESTION TWO (20 MARKS)

a) Determine the values of a so that A = ai - 2j + k and B = 29i + aj - 4k are orthogonal. (3 marks)

- b) Let u = (1, -3, 4) and v = (3, 4, 7). Find
 i. d (u, v) the distance between u and v. (3 marks)
 - ii. Cos θ , where θ is the angle between **u** and **v** (2 marks)
- c) Solve the following systems of equations.

$$2x_1 - x_2 = 7$$

- $x_1 + 2x_2 - x_3 = 1$
 $x_2 + 2x_3 = 1$

Using Gausi – Seidel method of iteration and perform the first five iterations. (8 marks)

d) Resolve the velocity vector of 20mls at an angle of -30° to the horizontal and vertical components.
 (4 marks)

QUESTION THREE (20 MARKS)

a) Convert the following binary numbers into their hexagonal equivalent.

(i) 11010110 ₂	(2 marks)
(ii) 1100111 ₂	(2 marks)
©Technical University of Mombasa	Page 2 of 4
2	

b)	Perform the binary addition 1001 + 10110	(2 marks)
c)	Convert the hexadecimal numbers into its decimal equivalent.	
	1A4E ₁₆	(2 marks)

d) Use crammers rule to solve

$$2y - 4z + 6w = 20$$

 $3y - 6z + w = 22$
 $-2y + 5z - 2w = -18$ (8 marks)

e) Express w = (1, -2, 5) as a linear combination of vectors.

$$V_1 = (1, 1, 1)$$

 $V_2 = (1, 2, 3)$
 $V_3 = (2, -1, 1)$ (4 marks)

QUESTION FOUR (20 MARKS)

- a) Find the solution to the following system of equations
 - a. 83x + 11y 4z = 95
 - b. 7x + 52y + 13z = 104
 - c. 3x + 8y + 29z = 71

Using Jacobi iterative method for the first five iterations. (13 marks)

b) Find the angle between the following pairs of planes.

$$2x - y + 2z = 3$$
, $3x + 6y + 2z = 0$. (3 marks)

c) Find the equation of the plane passing through the point (1, 2, -1) and perpendicular to the planes x + y - 2z = 5 and 3x - y + 4z = 12. (4 marks)

QUESTION FIVE (20 MARKS)

- a) Given $A = \begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix}$ $B = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$ show that $(AB)^{\mathsf{T}} = B^{\mathsf{T}}A^{\mathsf{T}}$ (6 marks)
- b) Determine the values of x for which the determinant of A is zero where;

$$A = \begin{bmatrix} x - 2 & 4 & 3 \\ 1 & x + 1 & -2 \\ 0 & 0 & x - 4 \end{bmatrix}$$
(5 marks)

c) Use logic gates to represent these expressions and draw the corresponding truth tables. © Technical University of Mombasa Page 3 of 4

j)	$\sim p \lor q$	(4 marks)
li)	$(x \lor y) \land \neg x$	(5 marks)