TECHNICAL UNIVERSITY OF MOMBASA
Faculty of applied and Health Sciences
DEPARTMENT OF MATHEMATICS AND PHYSICS
UNIVERSITY EXAMINATION FOR:
BMCS/BSSC2016
AMA 4217: LINEAR ALGEBRA 1
SPECIAL/ SUPPLIMENTARY EXAMINATIONS
SERIES: September2018

TIME: 2 HOURS

DATE: September2018

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of 5 questions. Question one is compulsory. Answer any other two questions
Do not write on the question paper.
SECTION A
QUESTION ONE (30 MARKS)
(a) Verify that if $M=\left(\begin{array}{ccc}-5 & 10 & 8 \\ 4 & -7 & -6 \\ -3 & 6 & 5\end{array}\right)$ and $\mathrm{N}=\left(\begin{array}{ccc}-1 & 2 & 4 \\ 2 & 1 & -2 \\ -3 & 0 & 5\end{array}\right)$, then $M N=N M=I$ where I is a unit matrix. Use the above information to solve the matrix equation

$$
\left(\begin{array}{ccc}
-5 & 10 & 8 \\
4 & -7 & -6 \\
-3 & 6 & 5
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
-3 \\
3 \\
2
\end{array}\right)
$$

(b) Solve the linear system

$$
\begin{aligned}
& -p+2 r+4 s=7 \\
& 2 p+r-2 s=-2 \\
& -3 p \quad+5 s=7
\end{aligned}
$$

(6 marks)
(c) Let $A=\left(\begin{array}{lll}1 & 2 & 1 \\ 3 & 1 & 0 \\ 2 & 1 & 2\end{array}\right)$, determine the classical adjoint of A hence find the inverse of A (6 marks)
(d) Reduce the matrix $\left(\begin{array}{cccc}0 & 1 & 3 & -2 \\ 2 & 1 & -4 & 3 \\ 2 & 3 & 2 & -1\end{array}\right)$ to row reduced echelon form. (6 marks)
(e) Find A^{T} and $\left(A^{T}\right)^{T}$ given that $A=\left(\begin{array}{cccc}2 & 1 & 3 & 5 \\ 4 & -2 & 1 & 2\end{array}\right)$.
(3marks)
(f) Find

$$
\begin{aligned}
& (i)(1,2) \bullet(2,3) \\
& (i i)(2 i+j) \times(3 i-j)
\end{aligned}
$$

SECTION B

QUESTION TWO (20 MARKS)

(a) M and N are members of a set S which is defined as $S=\left\{\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right), a, b \in \mathfrak{R}\right\}$. Show that the product of M and N is also a member of S
(b) Determine the distance between the planes $x+2 y-2 z=3$ and $2 \mathrm{x}+4 \mathrm{y}-4 \mathrm{z}=7$
(c) Find the dimension and a basis for
(i) $U=\{(x, y, z, w, t) / x+y+z+w+\mathrm{t}=0$ and $\mathrm{x}-\mathrm{y}+\mathrm{z}-\mathrm{w}+\mathrm{t}=0\}$
(5 marks)
(ii) $V=\{(x, y, z) / x=2 y$ and $\mathrm{z}=3 \mathrm{y}\}$

QUESTION THREE (20MARKS)

(a) Find the angle between the planes $2 x+y-2 z=1$ and $\mathrm{x}-2 \mathrm{y}-2 \mathrm{z}=2$
(6marks)
(b) Determine the equation of the plane through the point $(1,2,3)$ and perpendicular to the planes $2 x-3 y+4 z=1$ and $3 x-5 y+2 z=3$
(c) Solve the given system by the Gauss Elimination method.

$$
\begin{align*}
& x+y+z+w=4 \\
& x+2 y-z-w=7 \tag{7marks}\\
& 2 x-y-z-w=8 \\
& x-y+2 z-2 w=-7
\end{align*}
$$

QUESTION FOUR (20 MARKS)

(a) If $\left|\begin{array}{cc}\lambda & \lambda \\ 3 & \lambda-2\end{array}\right|=0$, find λ.
(b) Find the distance from the origin to the plane $2 x+3 y-z=2$.
(c) Write the line $\frac{x-3}{2}=\frac{y+4}{3}=\frac{5-z}{4}$ in the form $\mathbf{v}=\mathrm{a}+\mathrm{tu}$ and show it passes through $(1,-7,9)$
(7 marks)
(d) Write the polynomial $v=t^{2}+4 t-3$ as a linear combination of the polynomials

$$
\begin{equation*}
e_{1}=t^{2}-2 t+5, \mathrm{e}_{2}=2 t^{2}-3 t \text { and } \mathrm{e}_{3}=t+3 \tag{7marks}
\end{equation*}
$$

QUESTION FIVE (20 MARKS)

(a) Suppose that $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots \ldots . . \overrightarrow{v_{k}}$ are non zero vectors such that $\overrightarrow{v_{i}} \cdot \overrightarrow{v_{j}}=0$ whenever $\mathrm{i} \neq \mathrm{j}$. Show that $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots \ldots . . \overrightarrow{v_{k}}$ are linearly independent. (5 marks)
(b) Show that $\{(1,1,1),(0,1,1),(0,1,-1)\}$ span \square^{3}. (5marks)
(c) Determine whether or not $\{(1,1,1),(1,2,3),(2,-1,1)\}$ form a basis for \square^{3}. (5marks)
(d) Find the dimension and a basis for $W=\{(a, b, c, d) / b-2 c+d=0\}$ (5 marks)

