

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of applied and Health Sciences

DEPARTMENT OF MATHEMATICS AND PHYSICS

UNIVERSITY EXAMINATION FOR:

BMCS/BSSC2016

AMA 4217: LINEAR ALGEBRA 1

SPECIAL/ SUPPLIMENTARY EXAMINATIONS

SERIES: September2018

TIME: 2 HOURS

DATE: September2018

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID

This paper consists of 5 questions. Question one is compulsory. Answer any other two questions

Do not write on the question paper.

SECTION A

QUESTION ONE (30 MARKS)

(a) Verify that if $M = \begin{pmatrix} -5 & 10 & 8 \\ 4 & -7 & -6 \\ -3 & 6 & 5 \end{pmatrix}$ and $N = \begin{pmatrix} -1 & 2 & 4 \\ 2 & 1 & -2 \\ -3 & 0 & 5 \end{pmatrix}$, then MN = NM = I where I

is a unit matrix. Use the above information to solve the matrix equation

©Technical University of Mombasa

$$\begin{pmatrix} -5 & 10 & 8 \\ 4 & -7 & -6 \\ -3 & 6 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -3 \\ 3 \\ 2 \end{pmatrix}$$
(5 marks)

(b) Solve the linear system

$$-p+2r+4s = 7$$

$$2p+r-2s = -2$$

$$-3p +5s=7$$
(6 marks)

(c) Let $A = \begin{pmatrix} 1 & 2 & 1 \\ 3 & 1 & 0 \\ 2 & 1 & 2 \end{pmatrix}$, determine the classical adjoint of A hence find the inverse of A

. (6 marks)
(d) Reduce the matrix
$$\begin{pmatrix} 0 & 1 & 3 & -2 \\ 2 & 1 & -4 & 3 \\ 2 & 3 & 2 & -1 \end{pmatrix}$$
 to row reduced echelon form. (6 marks)

(e) Find
$$A^{T}$$
 and $\left(A^{T}\right)^{T}$ given that $A = \begin{pmatrix} 2 & 1 & 3 & 5 \\ 4 & -2 & 1 & 2 \end{pmatrix}$. (3marks)

(f) Find
$$\frac{(i)(1,2)\bullet(2,3)}{(ii)(2i+j)\times(3i-j)}$$
(4marks)

SECTION B

QUESTION TWO (20 MARKS)

(a) M and N are members of a set S which is defined as

$$S = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix}, a, b \in \Re \right\}$$
. Show that the product of M and N is also a member of S

©Technical University of Mombasa

Page 2 of 4

(5 marks)

- (b) Determine the distance between the planes x+2y-2z=3 and 2x+4y-4z=7 (5 marks)
- (c) Find the dimension and a basis for

(i)
$$U = \{(x, y, z, w, t) / x + y + z + w + t = 0 \text{ and } x - y + z - w + t = 0\}$$
 (5 marks)

(ii)
$$V = \{(x, y, z) | x = 2y \text{ and } z = 3y\}$$
 (5 marks)

QUESTION THREE (20MARKS)

- (a) Find the angle between the planes 2x + y 2z = 1 and x 2y 2z = 2 (6marks)
- (b) Determine the equation of the plane through the point (1,2,3) and perpendicular to the planes 2x-3y+4z=1 and 3x-5y+2z=3 (7 marks)
- (c) Solve the given system by the Gauss Elimination method.

$$x + y + z + w = 4$$

$$x + 2y - z - w = 7$$

$$2x - y - z - w = 8$$

$$x - y + 2z - 2w = -7$$

(7 marks)

QUESTION FOUR (20 MARKS)

- (a) If $\begin{vmatrix} \lambda & \lambda \\ 3 & \lambda 2 \end{vmatrix} = 0$, find λ . (3marks)
- (b) Find the distance from the origin to the plane 2x+3y-z=2. (3maks)
- (c) Write the line $\frac{x-3}{2} = \frac{y+4}{3} = \frac{5-z}{4}$ in the form $\mathbf{v}=\mathbf{a}+\mathbf{tu}$ and show it passes through (1,-7,9) (7 marks)
- (d) Write the polynomial $v = t^2 + 4t 3$ as a linear combination of the polynomials $e_1 = t^2 2t + 5$, $e_2 = 2t^2 3t$ and $e_3 = t + 3$ (7 marks)

©Technical University of Mombasa

QUESTION FIVE (20 MARKS)

- (a) Suppose that $\vec{v_1}, \vec{v_2}, \dots, \vec{v_k}$ are non zero vectors such that $\vec{v_i}, \vec{v_j} = 0$ whenever $i \neq j$. Show that $\vec{v_1}, \vec{v_2}, \dots, \vec{v_k}$ are linearly independent. (5 marks)
- (b) Show that $\{(1,1,1), (0,1,1), (0,1,-1)\}$ span \square^3 . (5marks)
- (c) Determine whether or not $\{(1,1,1),(1,2,3),(2,-1,1)\}$ form a basis for \square^3 . (5marks)
- (d)Find the dimension and a basis for $W = \{(a,b,c,d)/b 2c + d = 0\}$ (5 marks)