

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR:

BACHELOR OF TECHNOLOGY IN APPLIED PHYSICS (BTAP) AND BACHELOR OF TECHNOLOGY IN

RENEWABLE ENERGY (BTRE)

AMA 4216: CALCULUS FOR TECHNOLISTS II.

SPECIAL/ SUPPLIMENTARY EXAMINATIONS

SERIES: September2018

TIME: 2 HOURS

DATE: September2018

Instructions to Candidates

You should have the following for this examination *-Answer Booklet, examination pass and student ID* This paper consists of 5 questions. Attempt question ONE and any other TWO questions. **Do not write on the question paper.**

Question ONE (30 mks) Compulsory

a).show that $\cosh x - \sinh x = e^{-x}$

(2marks)

b).Express in partial fractions
$$\frac{x^2+3x-10}{x^2-2x-3}$$
 and hence solve $\int \frac{x^2+3x-10}{x^2-2x-3} dx$ (6marks)

©Technical University of Mombasa

c) .Given that
$$\int_{3}^{5} f(x) dx = 7$$
 and $\int_{5}^{8} f(x) dx = -4$,
Find $4 \int_{3}^{8} f(x) dx$ (3marks)
d).Express as a ratio 0. 1[']2 (4marks)
e).Evaluate
i). $\int \cos^{3} x dx$ (3marks)
ii). $\int \cos^{8} x \sin^{5} x dx$ (5marks)
iii). $\int_{0}^{\frac{\pi}{2}} x^{2} \cos x dx$ (5 marks)

f). Find the length of the curve $y^2 = x^3$ between x = 0 and x = 4 (4marks)

Question two (20mks)

The parametric equations of the equations of a curve are

$$\mathbf{X} = \frac{t}{1+t} \qquad \mathbf{Y} = \frac{t^2}{1+t}$$

Find

a)	Its Cartesian equation	4mks
b)	$\frac{dy}{dx}$ in terms of t	4mks
c)	The coordinates of the point(s) where the gradient is -3	4mks
d)	The equation of the tangent at the point where $t=2$	2mks
e)	The equation of the normal at the point where t=2	2mks
f)	Evaluate $\int_0^{\pi/2} \sin 2x \cos x dx$	4mks

©Technical University of Mombasa

Question three (20mks)

a).Evaluate
$$\int \frac{1}{1+sinx} dx$$
 (4marks)

b). Find the volume of the solid bounded above by the graph $f(x,y) = x^3y + 1$ and below by the triangle $R=[(0,1) \times (0,3)]$ (4marks)

c).Determine
$$\frac{d^2y}{dx^2}$$
 of the function at (1,2) $y^3 - xy^2 + x^2y + x^2 = 7$ (7marks)

d).Use the fourth McLaurin polynomial to approximate $\ln 1.1$ correct to 5 decimal places . (5marks)

Question four (20mks)

a). Determine the Centre of mass for the region bounded by

$$y = x^3$$
 and $y = \sqrt{x}$. (4marks)

b).Evaluate
$$\int \sec x \, dx$$
 (4marks)

c). The region enclosed by the semi-circle $y = \sqrt{4 - x^2}$ and the x-axis is revolved around

the x-axis. Determine the volume of the solid generated. (4marks)

d). Evaluate
$$\int_{1}^{2} \int_{3}^{4} (2x^{2} + xy^{3}) dx dy$$
 (4marks)

e). *evaluate*
$$\int \frac{1}{x^{2/3} - x^{1/2}} dx$$
 (4marks)

Question five (20mks)

a).Evaluate

©Technical University of Mombasa

i)
$$\int cos^5 x \, dx$$
 (4marks)
ii). $\int sin^2 x cos^6 x \, dx$ (4marks)
b). Find by reduction $\int cos^8 x \, dx$ (6mks)

c).Given
$$\sin 45^0 = 1/\sqrt{2}$$
 and $\cos 45^0 = 1/\sqrt{2}$. Approximate $\sin 44^0$ by Taylor's series up to x^{3} .
(3marks)

d).Find the total derivative of $z = 3yx^3 + x^2y^2 + xy^3$ (3marks)