TECHNICAL UNIVERSITY OF MOMBASA
FACULTY OF APPLIED AND HEALTH SCIENCES
DEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR:
BACHELOR OF TECHNOLOGY IN APPLIED PHYSICS (BTAP) AND BACHELOR OF TECHNOLOGY IN
RENEWABLE ENERGY (BTRE)
AMA 4216: CALCULUS FOR TECHNOLISTS II.

SPECIAL/ SUPPLIMENTARY EXAMINATIONS
SERIES: September2018
TIME: 2 HOURS

DATE: September2018

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of 5 questions. Attempt question ONE and any other TWO questions.
Do not write on the question paper.

Question ONE (30 mks) Compulsory
a). show that $\cosh x-\sinh x=e^{-x}$
(2marks)
b). Express in partial fractions $\frac{x^{2}+3 x-10}{x^{2}-2 x-3}$ and hence solve $\int \frac{x^{2}+3 x-10}{x^{2}-2 x-3} d x$
c). Given that $\int_{3}^{5} f(x) d x=7$ and $\int_{5}^{8} f(x) d x=-4$,

$$
\text { Find } 4 \int_{3}^{8} f(x) d x
$$

(3marks)
d).Express as a ratio $0.1 \ddot{2}$
e).Evaluate
i). $\int \cos ^{3} x d x$
ii). $\int \cos ^{8} x \sin ^{5} x d x$
iii). $\int_{0}^{\frac{\pi}{2}} x^{2} \cos x d x$
f). Find the length of the curve $y^{2}=x^{3}$ between $\quad x=0$ and $x=4$

Question two (20mks)

The parametric equations of the equations of a curve are

$$
\mathrm{X}=\frac{t}{1+t} \quad \mathrm{Y}=\frac{t^{2}}{1+t}
$$

Find
a) Its Cartesian equation

4mks
b) $\frac{d y}{d x}$ in terms of t
c) The coordinates of the point(s) where the gradient is -3
d) The equation of the tangent at the point where $t=2$
e) The equation of the normal at the point where $t=2$

4mks
4mks
2mks
2mks
f) Evaluate $\int_{0}^{\pi / 2} \sin 2 x \cos x d x$

4mks

Question three (20mks)

a). Evaluate $\int \frac{1}{1+\sin x} d x$
(4marks)
b). Find the volume of the solid bounded above by the graph $f(x, y)=x^{3} y+1$ and below by the triangle $\quad R=[(0,1) \times(0,3)]$
c). Determine $\frac{d^{2} y}{d x^{2}}$ of the function at (1,2) $y^{3}-x y^{2}+x^{2} y+x^{2}=7$
(7marks)
d).Use the fourth McLaurin polynomial to approximate $\ln 1.1$ correct to 5 decimal places . (5marks)

Question four (20mks)

a). Determine the Centre of mass for the region bounded by

$$
y=x^{3} \text { and } y=\sqrt{x}
$$

(4marks)
b). Evaluate $\int \sec x d x$
c). The region enclosed by the semi-circle $y=\sqrt{4-x^{2}}$ and the x-axis is revolved around the x-axis. Determine the volume of the solid generated.
d). Evaluate $\int_{1}^{2} \int_{3}^{4}\left(2 x^{2}+x y^{3}\right) d x d y$
(4marks)
e). evaluate $\int \frac{1}{x^{2 / 3}-x^{1 / 2}} d x$
(4marks)

Question five (20mks)

a).Evaluate
i) $\int \cos ^{5} x d x$
ii). $\int \sin ^{2} x \cos ^{6} x d x$
b). Find by reduction $\int \cos ^{8} x d x$
c). Given $\sin 45^{\circ}=1 / \sqrt{2}$ and $\cos 45^{\circ}=1 / \sqrt{2}$. Approximate $\sin 44^{0}$ by Taylor's series up to x^{3}.
d). Find the total derivative of $z=3 y x^{3}+x^{2} y^{2}+x y^{3}$

