TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES DEPARTMENT OF MATHEMATICS \& PHYSICS
 UNIVERSITY EXAMINATION FOR:

THE SECOND YEAR DEGREE OF BACHELOR OF SCIENCE IN MATHEMATICS AND FINANCE, CIVIL, MECHANICAL, ELECTRICAL AND ELECTRONICS, MEDICAL ENGINEERING.

AMA 4209: CALCULUS III

SPECIAL/ SUPPLIMENTARY EXAMINATIONS

SERIES: SEPTEMBER-2018

TIME: 2 HOURS

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID

This paper consists of 5 questions. Attempt Question One and any other Two Questions.

Use SMP four figure mathematical tables and non-programmable electronic calculators.

Do not write on the question paper.

Question ONE (30 marks) compulsory.

a) State all conditions that a function $f(x)$ must satisfy for it to be continuous at $x=a$.
b) Show that the sequence $a_{n}=\frac{n^{2}}{2^{n}-1}$ converges and determine the limit.
c) Solve the improper integral $\int_{1}^{\infty}(1-x) e^{-x} d x$
d) Two stationary patrol cars with radars are 5 km apart on a high way and a truck passes the first patrol car, its speed is clocked at $55 \mathrm{~km} / \mathrm{h}$. Four minutes later, when the truck passes the second patrol car, its speed is clocked at $50 \mathrm{~km} / \mathrm{h}$. Prove that the truck must have exceeded the speed limit of $60 \mathrm{~km} / \mathrm{h}$ at some point during the interval. (3 marks)
e) Using the fourth degree Maclaurin polynomial, approximate $\ln (1.1)$.
f) Calculate $\iint_{R} x \cos (x y) d A$, where R is the rectangle $\left\{(x, y) \left\lvert\, 0 \leq x \leq \frac{\pi^{c}}{4}\right., 0 \leq y \leq 2\right\}$
g) Show that any differential function of the form $w=f(s)$ where $s=y+b x$ is a solution of the partial differential equation $\frac{\partial w}{\partial x}-b \frac{\partial w}{\partial y}=0$ where $b \neq 0$ is a constant.

Question TWO (20 MARKS)

a) Calculate $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at $(1,2)$ for $f(x, y)=\sqrt{9-x^{2}-y^{2}}$
(5 marks)
b) Find the amount of money you should invest today at an annual interest rate of 10% compound continuously if $A=P e^{-r t}$ so that starting next year, you can make annual withdrawals of Kshs 400 in perpetuity.
c) Let $\phi=45 x^{2} y$ and V denotes the closed region bounded by the planes $4 x+2 y+z=8, x=0, y=0, z=0$.

Evaluate the volume integral $\iint_{V} \phi d V$ of the solid.

Question THREE (20 MARKS)

a) If $f(x)=x^{3}+1$ show that $\mathrm{f}(\mathrm{x})$ satisfies the mean value theorem on the interval $[1,2]$ and find the value of C whose existence is guaranteed by the theorem.
b) Find the moments and centre of mass for a system of objects that have masses 3,4 and 8 at the points $(-1,1),(2,-1)$ and (3,2).
c) Evaluate $\iint_{T} 6 x y d A$ where T is the region in the first quadrant bounded by two graphs $y=x^{2}$ and $y=2 x$
d) Obtain the Taylors polynomial of degree 6 for $f(x)=\cos x$ about $x=0$. Use your answer to approximate $\cos 1$
a) Find the radius of convergence of a power series $\sum_{n=0}^{\infty} 3(x-2)^{n}$.
(4 marks)
b) Find a sequence $\left\{a_{n}\right\}$ whose first five terms are $\frac{2}{1}, \frac{4}{3}, \frac{8}{5}, \frac{16}{7}, \frac{32}{9} \ldots$ and determine whether it converges or diverges.
(6marks)
c) Let R be the square $\{(x, y) \mid-1 \leq x \leq 1,-1 \leq y \leq 1\}$. Calculate the volume of the solid region determined by the graph of $f(x, y)=8-x^{2}-y^{2}$ over R .
d) Determine $\left.\frac{d f}{d t}\right|_{t=0}$ if $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{xy}+\mathrm{z}$ where $\mathrm{x}=\operatorname{cost}, \mathrm{y}=\sin \mathrm{t}$ and $\mathrm{z}=\mathrm{t}$.

Question FIVE (20 marks)

a) Use geometric series to express $0.08 \dot{0} \dot{8}$ as a ratio of two integers.
b) Find the Taylor polynomials $\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$ and P_{4} for $f(x)=\ln x$ contained at $c=1$.
c) Using L'Hopital's rule, evaluate $\lim _{x \rightarrow 0}\left[\frac{1}{x}-\frac{1}{e^{x}-1}\right]$
d) Find the area of the region enclosed by the graph of a polar equation $r=5 \sin 3 \theta$ which is a 3-leaved flower.

THE END

