TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES
 DEPARTMENT OF MATHEMATICS \& PHYSICS
 UNIVERSITY EXAMINATION FOR:
 BSSC/BMCS/BSMF YEAR II SEMESTER I
 AMA 4208: ALGEBRAIC STRUCTURES

 SPECIAL/ SUPPLIMENTARY EXAMINATIONS

 SPECIAL/ SUPPLIMENTARY EXAMINATIONS
 SERIES: September 2018

TIME: 2HOURS
DATE: September 2018

ANSWER QUESTION ONE AND ANY OTHER TWO QUESTIONS

QUESTION ONE (30 MARKS)
a) Let $\mathcal{G}=\{a, b, c\}$ and let the binary operation $*$ on G given on the table below

$*$	a	b	c
a	a	b	c
B	b	c	a
C	c	a	b

i) Find the identity in G
ii) Find the inverse of c
iii) Is G commutative?
b) Define the order of a group
c) Prove that every field is an integral domain.
d) Define a subring.
e) Find all the distinct left coset of $5 \mathbb{Z}$ in \mathbb{Z}
f) Outline the group of symmetries of an equilateral triangle
g)
i) Define a permutation
(2 Marks)
ii) Given that $\quad \tau=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 5 & 3 & 1\end{array}\right) \quad \delta=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 4 & 5 & 2\end{array}\right)$

Find $\delta \tau$ as a product of disjoint cycles
(4 Marks)
h) Let $G=\mathbb{Z}_{5} \backslash\{0\}$ be a group under multiplication Modulo 5. Draw the Cayley table for G.

QUESTION TWO (20 MARKS)

a) Let $\mathbb{N}=\left(\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right)$ be a subset of a group of 2×2 invertible matrices $\mathcal{M}_{2}(\mathbb{R})$

$$
\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) / a d-b c \neq 0\right\} \text {. Show that } \mathbb{N} \text { is a subgroup of } \mathcal{M}_{2}(\mathbb{R}) \quad \text { (5 Marks) }
$$

b)
i) Define an identity element
ii) Show that the identity element in a set Sunder the binary operation * is unique.
c) Let H and K be subgroup of G . Show that $H \cap K$ is also a subgroup of G. (6 Marks)
d) Let G be the Quartenion group; find the cyclic subgroup of G generated by;
i \quad j
(2 Marks)
ii k
(2 Marks)

QUESTION THREE (20 MARKS)

a) Define a ring
(5 Marks)
b) Prove that if R is a ring with unity, then R has a characteristic $n>0$ if and only if n is the least positive integer such that $n .1=0$
c) Show whether the following are integral domains
(i) The set of integers
(ii) \mathbb{Z}_{8}
(iii) $3 \mathbb{Z}$
(iv) \mathbb{Z}_{7}
j) Prove that multiplicative cancellation laws hold in a ring R if and only if R has no zero divisors.

QUESTION FOUR (20 MARKS)

a) State whether the following statements are true or false.
i) $\quad \mathbb{Z}, \mathbb{Q}, \mathbb{N}, \mathbb{R}$ and \mathbb{C} are associative under addition and multiplication
ii) If P is prime, then \mathbb{Z}_{p} is a field
iii) The set \mathbb{Z}_{6} has no nilpotent elements
iv) All zero divisors are integral domains
v) A multiplicative identity in a ring is called the order of the ring
b) Prove that the order of an element of a finite group divides the order of a group
c) Define the following terms
i) A nilpotent element in a ring R
ii) A unit in a ring
d) Prove that every finite integral domain is afield.

QUESTION FIVE (20 MARKS)

a) Let R be a ring, prove that for any $a, b \in R$ we have;
i) $\quad 0 a=a 0=0$
(2 Marks)
ii) $(-a)(-b)=a b$
b) Define:
(i) A composition of functions
(ii) Cyclic subgroup
c) Prove that in the ring \mathbb{Z}_{n}, the zero divisors are precisely those elements that are not relatively prime to n.
d) State and prove Lagrange's theorem

