

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES DEPARTMENT OF MATHEMATICS & PHYSICS **UNIVERSITY EXAMINATION FOR:** BSSC/BMCS/BSMF YEAR II SEMESTER I AMA 4208: ALGEBRAIC STRUCTURES SPECIAL/ SUPPLIMENTARY EXAMINATIONS **SERIES: September 2018**

TIME: 2HOURS
DATE: September 2018

ANSWER QUESTION ONE AND ANY OTHER TWO QUESTIONS

QUESTION ONE (30 MARKS)

a) Let $G = \{a, b, c\}$ and let the binary operation * on G given on the table below

*	a	b	c
a	a	b	с
В	b	с	a
С	с	a	b

- i) Find the identity in G (1 Mark)
- ii) Find the inverse of c (1 Mark)

1

iii) Is G commutative?

©Technical University of Mombasa

(1 Mark) Page 1 of 4

b)	Define the order of a group	(2 Marks)
c)	Prove that every field is an integral domain.	(4 Marks)
d)	Define a subring.	(3 Marks)
e)	Find all the distinct left coset of $5\mathbb{Z}$ in \mathbb{Z}	(5 Marks)
f)	Outline the group of symmetries of an equilateral triangle	(3 Marks)
g)		
	i) Define a permutation	(2 Marks)
	ii) Given that $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 5 & 3 & 1 \end{pmatrix}$ $\delta = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 5 \end{pmatrix}$	$\binom{5}{2}$
	Find $\delta \tau$ as a product of disjoint cycles	(4 Marks)
h)	Let $G = \mathbb{Z}_{-} \setminus \{0\}$ be a group under multiplication Modulo 5. Draw the C	avley table for

```
h) Let G = \mathbb{Z}_5 \setminus \{0\} be a group under multiplication Modulo 5. Draw the Cayley table for
G. (4 Marks)
```

QUESTION TWO (20 MARKS)

a) Let
$$\mathbb{N} = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$$
 be a subset of a group of 2×2 invertible matrices $\mathcal{M}_2(\mathbb{R})$
 $\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} / ad - bc \neq 0 \right\}$. Show that \mathbb{N} is a subgroup of $\mathcal{M}_2(\mathbb{R})$ (5 Marks)
b)

- i) Define an identity element (1 Mark)
- ii) Show that the identity element in a set Sunder the binary operation * is unique.

(4 Marks)

c) Let H and K be subgroup of G. Show that $H \cap K$ is also a subgroup of G. (6 Marks)

- d) Let G be the Quartenion group; find the cyclic subgroup of G generated by;
- i j (2 Marks) ii k (2 Marks)

QUESTION THREE (20 MARKS)

a)	De	efine a ring	(5 Marks)
b)	Pr	rove that if R is a ring with unity, then R has a characteristic $n > 0$ if and	l only if <i>n</i> is
	the	e least positive integer such that $n. 1 = 0$	(5 Marks)
c)	Sh	now whether the following are integral domains	
(i)		The set of integers	(1 Mark)
(ii)		\mathbb{Z}_8	(1 Mark)
(iii)	3Z	(1 Mark)
(iv))	\mathbb{Z}_7	(1 Mark)
j)	Pr	rove that multiplicative cancellation laws hold in a ring R if and only if R	has no zero
	di	visors.	(6 Marks)

QUESTION FOUR (20 MARKS)

a) State whether the following statements are true or false.

i)	\mathbb{Z} , \mathbb{Q} , \mathbb{N} , \mathbb{R} and \mathbb{C} are associative under addition and multiplication	(1 Mark)
ii)	If P is prime, then \mathbb{Z}_p is a field	(1 Mark)
iii)	The set \mathbb{Z}_6 has no nilpotent elements	(1 Mark)
iv)	All zero divisors are integral domains	(1 Mark)
v)	A multiplicative identity in a ring is called the order of the ring	(1 Mark)

b) Prove that the order of an element of a finite group divides the order of a group

		(5 Marks)
c)	Define the following terms	
i)	A nilpotent element in a ring R	(2 Marks)
ii)	A unit in a ring	(2 Marks)
d)	Prove that every finite integral domain is afield.	(6 Marks)

QUESTION FIVE (20 MARKS)

- a) Let R be a ring, prove that for any $a, b \in R$ we have;
 - i) 0a = a0 = 0 (2 Marks)

ii)
$$(-a)(-b) = ab$$
 (3 Marks)

b) Define:

(i)	A composition of functions	(2 Marks)

(ii) Cyclic subgroup (2 Marks)

c) Prove that in the ring \mathbb{Z}_n , the zero divisors are precisely those elements that are not relatively prime to n. (4 Marks)

d) State and prove Lagrange's theorem (7 Marks)