

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of applied and Health Sciences

DEPARTMENT OF MATHEMATICS AND PHYSICS

UNIVERSITY EXAMINATION FOR:

BSMD/BTMD/BTRE/BTAP2016

AMA 4206: LINEAR ALGEBRA

SPECIAL/ SUPPLIMENTARY EXAMINATIONS

SERIES: September2018

TIME: 2 HOURS

DATE: September2018

INSTRUCTIONTO CANDIDATES:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consists of **FIVE** questions

Answer question ONE (COMPULSORY) and any other TWO questions

Maximum marks for each part of a question are as shown

QUESTION ONE 30 MARKS [COMPULSORY]

a) Verify that the matrix

i.
$$A = \begin{bmatrix} 3 & -2 \\ 3 & -2 \end{bmatrix}$$
 Is *idempotent*

[1 mark]

ii.
$$B = \begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix}$$
 Is *nilpotent* of order 3

[2 marks]

b) i. State Sylvester's law of Nullity

[2 marks]

iii. Given
$$T(x) = \begin{pmatrix} 4 & 1 & -2-3 \\ 2 & 1 & 1-4 \\ 2 & 0 & -9 & 9 \end{pmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$
, find the **nullity**, **rank** and **basis** of ker(T)

[7 marks]

c) Find x, y and z in the system using Cramer's rule
$$\begin{array}{c} -2x + 3y - z = 1 \\ x + 2y - z = 4 \\ -2x - y + z = -3 \end{array}$$

[4 marks]

- d) i. Given the compacted system of Cartesian equations *Ax=b*. State the conditions for each of the following possibilities to happen to the solution
 - I. Unique solution

[1 mark]

II. No solution

[1 mark]

III. Infinitely many solutions

[1 mark]

ii. Determine the value of 'a' so that the system has $\begin{aligned} x - 3y &= -3\\ 2x + ay - z &= -2\\ x + 2y + az &= 1 \end{aligned}$

I. No solution

[5 marks]

II. **Infinitely** many solutions

[1 mark]

III. **Unique** solution

[1 mark]

e) Find the **cross product** of the vectors $\tilde{a} = 3i - 5j + k$ and $\tilde{b} = 2j - 4k$

[4 marks]

QUESTION TWO (20 MARKS)

- a) Suppose that V is a vector space and $S = \{v_1, v_2, v_3 \dots \}$ is a set of vectors in V
 - i. Define a basis for **V**

[2 marks]

ii. Determine if $S = \{(1,2,1), (2,9,0), (3,3,4)\}$ is a basis for \mathbb{R}^3

[8 marks]

b) Find the **acute** angle between the diagonals of a quadrilateral having vertices at (0,0,0),

(3,2,0), (4,6,0) and (1,3,0)

[6 marks]

c) Find the *determinant* of Matrix A given by
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 3 & 2 \\ 1 & 0 & 3 \end{pmatrix}$$
 using the Laplace method

[4 marks]

QUESTION THREE (20 MARKS)

a) Find $W\left(sinx; sin2x; \frac{\pi}{4}\right)$

[4 marks]

b) Obtain the reduced **echelon** form of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$

[3 marks]

c) For any vectors $U, V \in \mathbb{R}^n$ and any scalars $a, b \in \mathbb{R}$, with S as a field. Prove that

i. (a+b)u = au + bu

[2 marks]

ii. (ab)u = a(bu)

[2 marks]

iii.
$$u + (-u) = 0$$

[2 marks]

d) If
$$A = xz^3i - 2x^2yzj + 2yz^4k$$
. Determine ∇XA at (1,-1,1)

[5 marks]

- e) Define the terms
 - i. Elementary matrix

[1 mark]

ii. Homogeneous system of equations

[1 mark]

QUESTION FOUR (20 MARKS)

a) Solve the *determinantal* equation $det \begin{vmatrix} 1 & 1+x \\ 1+x & 1 \end{vmatrix} = 0$

[3 marks]

b)

i. Let $k_1v_1 + k_2v_2 + k_3v_3 + \dots + k_nv_n = 0$ be a *homogeneous* system of equatons with at least one solution; then differentiate linearly **dependence** and **independence** of the set of vectors = $\{v_1, v_2, \dots v_n\}$

[2 marks]

ii. Determine if $S = \{(2 + x + x^2), (x - 2x^2), (2 + 3x - x^2)\}$ is *linearly independent* in P_2

[6 marks]

c) Find A^{-1} (the inverse of the matrix A) by first getting the **ad joint** of $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 3 & 2 \\ 1 & 0 & 3 \end{pmatrix}$

[6 marks]

d) If
$$\emptyset(x, y, z) = 3x^2y - y^3z^2$$
, Find $\nabla \emptyset$ at (1,-2,-1)

[3 marks]

QUESTION FIVE (20 MARKS)

- a) Determine if $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(x_1, x_2) = (x_1 + 1, x_2)$ is a *linear transformation* [4 marks]
- b) Partition the matrix into four equal sized 2 x 2 matrices and compute the *determinant*

$$\begin{pmatrix} 1 & 4 & 0 & 2 \\ 3 & 2 & 1 & -2 \\ 4 & 4 & 3 & 5 \\ -5 & 3 & 2 & 0 \end{pmatrix}$$

[6 marks]

c)

i. Define a *subspace* W if V is a vector space and W be a **non-empty** subset of V

[2 marks]

ii. Find the *basis* and *dimension* Space for the equations $2x_1 + 2x_2 - x_3 + x_5 = 0$ $-x_1 - x_2 + 2x_3 - 3x_4 + x_5 = 0$ $x_1 + x_2 - 2x_3 - x_5 = 0$ $x_3 + x_4 + x_5 = 0$

[8 marks]