

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of applied and Health Sciences
DEPARTMENT OF MATHEMATICS AND PHYSICS

UNIVERSITY EXAMINATION FOR:

BSMD/BTMD/BTRE/BTAP2016
AMA 4206: LINEAR ALGEBRA
SPECIAL/ SUPPLIMENTARY EXAMINATIONS
SERIES: September2018
TIME: 2 HOURS

DATE: September2018

INSTRUCTIONTO CANDIDATES:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consists of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown

QUESTION ONE 30 MARKS [COMPULSORY]

a) Verify that the matrix
i. $\quad A=\left[\begin{array}{ll}3 & -2 \\ 3 & -2\end{array}\right] \quad$ Is idempotent
[1 mark]
ii. $\quad B=\left[\begin{array}{rrr}1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3\end{array}\right]$ Is nilpotent of order 3
[2 marks]
b) i. State Sylvester's law of Nullity
[2 marks]
iii. Given $T(x)=\left(\begin{array}{cccc}4 & 1 & -2-3 \\ 2 & 1 & 1-4 \\ 2 & 0 & -9 & 9\end{array}\right)\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]$, find the nullity, rank and basis of $\operatorname{ker}(T)$ [7 marks]

$$
-2 x+3 y-z=1
$$

c) Find x, y and z in the system using Cramer's rule $x+2 y-z=4$

$$
-2 x-y+z=-3
$$

[4 marks]
d) i. Given the compacted system of Cartesian equations $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$. State the conditions for each of the following possibilities to happen to the solution

I . Unique solution
[1 mark]
II. No solution
[1 mark]
III. Infinitely many solutions
[1 mark]

$$
x-3 y=-3
$$

ii. Determine the value of ' \boldsymbol{a} ' so that the system has $2 x+a y-z=-2$ $x+2 y+a z=1$
I. No solution
[5 marks]
II. Infinitely many solutions
[1 mark]
III. Unique solution
[1 mark]
e) Find the cross product of the vectors $\tilde{a}=3 i-5 j+k$ and $\tilde{b}=2 j-4 k$
[4 marks]

QUESTION TWO (20 MARKS)

a) Suppose that \boldsymbol{V} is a vector space and $S=\left\{v_{1}, v_{2}, v_{3} \ldots \ldots ..\right\}$ is a set of vectors in \mathbf{V}
i. Define a basis for \mathbf{V}
[2 marks]
ii. \quad Determine if $S=\{(1,2,1),(2,9,0),(3,3,4)\}$ is a basis for \mathbb{R}^{3} [8 marks]
b) Find the acute angle between the diagonals of a quadrilateral having vertices at $(0,0,0)$,
$(3,2,0),(4,6,0)$ and $(1,3,0)$
[6 marks]
c) Find the determinant of Matrix A given by $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 3 & 2 \\ 1 & 0 & 3\end{array}\right)$ using the Laplace method [4 marks]

QUESTION THREE (20 MARKS)

a) Find $W\left(\sin x ; \sin 2 x ; \frac{\pi}{4}\right)$
[4 marks]
b) Obtain the reduced echelon form of the matrix $\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & -1 & 2 \\ 2 & 2 & 1\end{array}\right]$
[3 marks]
c) For any vectors $\boldsymbol{U}, \boldsymbol{V} \in \mathcal{R}^{n}$ and any scalars $a, b \in \mathcal{R}$, with S as a field. Prove that
i. $\quad(a+b) u=a u+b u$
[2 marks]
ii. $\quad(a b) u=a(b u)$
[2 marks]
iii. $u+(-u)=0$
[2 marks]
d) If $A=x z^{3} i-2 x^{2} y z j+2 y z^{4} k$. Determine $\nabla X A$ at $(1,-1,1)$
[5 marks]
e) Define the terms
i. Elementary matrix
[1 mark]
ii. Homogeneous system of equations
[1 mark]

QUESTION FOUR (20 MARKS)

a) Solve the determinantal equation $\operatorname{det}\left|\begin{array}{cc}1 & 1+x \\ 1+x & 1\end{array}\right|=0$
[3 marks]
b)
i. Let $k_{1} v_{1}+k_{2} v_{2}+k_{3} v_{3}+\cdots \ldots \ldots+k_{n} v_{n}=0$ be a homogeneous system of equatons with at least one solution; then differentiate linearly dependence and independence of the set of vectors $=\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$
[2 marks]
ii. Determine if $S=\left\{\left(2+x+x^{2}\right),\left(x-2 x^{2}\right),\left(2+3 x-x^{2}\right)\right\}$ is linearly independent in P_{2} [6 marks]
c) Find A^{-1} (the inverse of the matrix A) by first getting the ad joint of $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 3 & 2 \\ 1 & 0 & 3\end{array}\right)$ [6 marks]
d) If $\emptyset(x, y, z)=3 x^{2} y-y^{3} z^{2}$, Find $\nabla \emptyset$ at $(1,-2,-1)$
[3 marks]

QUESTION FIVE (20 MARKS)

a) Determine if $\boldsymbol{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T\left(x_{1}, x_{2}\right)=\left(x_{1}+1, x_{2}\right)$ is a linear transformation [4 marks]
b) Partition the matrix into four equal sized 2×2 matrices and compute the determinant

$$
\left(\begin{array}{cccc}
1 & 4 & 0 & 2 \\
3 & 2 & 1 & -2 \\
4 & 4 & 3 & 5 \\
-5 & 3 & 2 & 0
\end{array}\right)
$$

[6 marks]
c)
i. Define a subspace W if V is a vector space and W be a non-empty subset of V [2 marks]
$2 x_{1}+2 x_{2}-x_{3}+x_{5}=0$
ii. Find the basis and dimension Space for the equations $\begin{gathered}-x_{1}-x_{2}+2 x_{3}-3 x_{4}+x_{5}=0 \\ x_{1}+x_{2}-2 x_{3}-x_{5}=0\end{gathered}$ $x_{3}+x_{4}+x_{5}=0$ [8 marks]

