TECHNICAL UNIVERSITY OF MOMBASA
A Centre of Excellence

DEPARTMENT OF MATHEMATICS AND PHYSICS

DECEMBER 2016 SERIES EXAMINATION

UNIT CODE: AMA 4102 UNIT TITLE: APPLIED MATHEMATICS 1 EXAMINATION FOR BACHELOR OF TECHNOLOGY IN ELECTRICAL AND ELECTRONICS ENGINEERING

 MAIN EXAMINATION

 MAIN EXAMINATION

 TIME ALLOWED: 2HOURS

 TIME ALLOWED: 2HOURS}

INSTRUCTIONTO CANDIDATES:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consists of FIVE questions
Mobile phones are prohibited in the examination hall
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown

QUESTION ONE (30 MARKS) COMPULSORY

a. Describe the motion represented by the figure of Displacement against time below

[4 marks]
b. Given that $\vec{F}=\left(2 x y+z^{3}\right) i+x^{2} j+3 x z^{2} k$
i) Show that F is a conservative force field [2 marks]
ii) Find the scalar potential [2 marks]
iii) Find the work done in moving an object in this field from $(1,-2,1)$ to $(3,1,4)$
c. If. $A=x^{2} z i-2 y^{2} z^{2} j+x y^{2} z k$

$$
\text { Find } \nabla . A \text { at the point }(1,-1,1)
$$

d. A nozzle is situated at a distance of 1.2 m above the ground level and is inclined at 60° to the horizontal. The diameter of the nozzle is 40 mm and the jet of water from the nozzle strikes the horizontal distance of 5 m . Find the initial velocity u.
e. Find the power exerted by a force $F=5 t^{2} i+2 t j$ on a particle with velocity $2 t^{2} j \quad$ when $\mathrm{t}=16$ seconds.
[3 marks]
f. A slender metal arch, thicker at the bottom than at the top, lies along the semi circle $y^{2}+z^{2}=$ $1, z \geq 0$, in the $y-z$ plane. Find the centre of the arch's mass if the density at the point (x, y, z) on the arch is $\delta(x, y, z)=2-z$
[7 marks]

QUESTION TWO (20 MARKS)

a. For a conical pendulum as shown below. Prove that for unit radius r of the circular path $\tan \theta=\frac{v^{2}}{g}$ where is θ the angle of inclination

b. Differentiate coplanar forces from concurrent forces.
c. Given the space curve $x=t, y=t^{2}, z=\frac{2}{3} t^{3}$ find

i) The curvature k and radius of curvature ρ	[5 marks]	
ii)	The tortion τ	marks]

d. A particle is moving along a straight line according to the law $=4 t^{3}+3 t+2$. if the distance is $\mathrm{x}=4$ cm when $\mathrm{t}=2$ seconds ; find the distance when $\mathrm{t}=5$ seconds and the acceleration of the particle at the same time.

QUESTION THREE (20 MARKS)

a. State THREE uses of dimensional analysis
b. A particle moves in a circle of radius 20 m . if its tangential speed is $40 \mathrm{~m} / \mathrm{s}$. find
i. The angular speed
ii. The angular and normal accelerations
c. Given $\emptyset=2 x^{3} y^{2} z^{4}$
i. Find $\nabla . \nabla \emptyset$
ii. Show that $\nabla \cdot \nabla \emptyset=\nabla^{2}$ where

$$
\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}} \text { is called the Laplacian Operator }
$$

d. Two particles have position vectors given by $r_{1}=4 t i-2 t^{2}-5 t k$ and
$r_{2}=$ $\left(2 t^{2}-t\right) i+t^{3} j-4 t k$. Find the relative velocity and acceleration of the second particle with to the first when $t=3$ seconds

QUESTION FOUR (20 MARKS)

a. Figure below shows a drum of mass 150 kg and radius 0.5 m being pulled by a horizontal force F against a step 0.1 m high. What initial force is just sufficient to turn the drum so that it raises over the step

b. Find the work done in moving a particle once around a circle c in the $\mathrm{x}-\mathrm{y}$ plane with center origin and radius three units by a force given by

$$
\begin{gathered}
F=(2 x-y+z) i+\left(x+y-z^{2}\right) j+(3 x-2 y+4 z) k \\
\text { for } x=3 \cos \theta \text { and } y=3 \sin \theta \text {. With } \theta \text { changing from zero to } 360^{\circ}(2 \Pi)
\end{gathered}
$$

c. A particle P projected from a point O on a horizontal plane with a speed of $72 \mathrm{~km} / \mathrm{h}$ at an angle Θ to the horizontal, where $\tan \theta=\frac{4}{3}$. find
i. Time taken for P to return to the plane
ii. Maximum time reached
iii. The range
iv. Speed after 2 seconds

QUESTION FIVE (20 MARKS)

a. Derive the dimensional expression for the second equation of motion
b. A coil spring lies along the helix $r=(\cos 4 t) i+(\sin 4 t) j+t k, 0 \leq t \leq 2 \Pi$. The spring's density is a constant, $\delta=1$.find the springs mass, the coordinates of the spring's centre of mass and the spring's moment of inertial and radius of gyration about Z axis.
c. If $\emptyset(x, y, z)=3 x^{2} y-y^{3} z^{2}$ find $\nabla \emptyset$ at $(1,-2,-1)$
d. A lorry of mass 200 kg moving at $10 \mathrm{~m} / \mathrm{s}$ on a horizontal surface is brought to rest in a distance of 12.5 m by the brakes being applied.
i. Calculate the average retarding force F
ii. What power must the engine produce if the lorry is to travel up a hill of 1 in 10 minutes at a constant speed $10 \mathrm{~m} / \mathrm{s}$; if friction resistance is 200 N .

THIS IS THE LAST PRINTED PAGE.

