

TECHNICAL UNIVERSITY OF MOMBASA

A Centre of Excellence

Faculty of Applied & Health Sciences

DEPARTMENT OF MATHEMATICS AND PHYSICS

DECEMBER 2016 SERIES EXAMINATION

UNIT CODE: AMA 4102 UNIT TITLE: APPLIED MATHEMATICS 1

EXAMINATION FOR BACHELOR OF TECHNOLOGY IN ELECTRICAL AND ELECTRONICS ENGINEERING

MAIN EXAMINATION

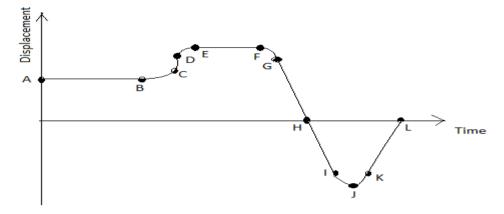
TIME ALLOWED: 2HOURS

INSTRUCTIONTO CANDIDATES:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consists of **FIVE** questions


Mobile phones are prohibited in the examination hall

Answer question ONE (COMPULSORY) and any other TWO questions

Maximum marks for each part of a question are as shown

QUESTION ONE (30 MARKS) COMPULSORY

a. Describe the motion represented by the figure of Displacement against time below

[4 marks]

[2 marks]

[4 marks]

- b. Given that $\vec{F} = (2xy + z^3)i + x^2j + 3xz^2k$
 - i) Show that F is a **conservative** force field [2 marks]
 - ii) Find the scalar potential
 - iii) Find the **work done** in moving an object in this field from (1,-2,1) to (3,1,4) [2 marks]
- c. If $A = x^2 z i 2y^2 z^2 j + x y^2 z k$

Find ∇ . *A* at the point (1, -1, 1)

- A nozzle is situated at a distance of 1.2 m above the ground level and is inclined at 60⁰ to the horizontal. The diameter of the nozzle is 40 mm and the jet of water from the nozzle strikes the horizontal distance of 5m. Find the initial velocity u.
- e. Find the power exerted by a force $F = 5t^2i + 2tj$ on a particle with velocity $v = ti 2t^2j$ when t=16 seconds. [3 marks]
- f. A slender metal arch, thicker at the bottom than at the top, lies along the semi circle $y^2 + z^2 = 1$, $z \ge 0$, in the y-z plane. Find the centre of the arch's mass if the density at the point (x, y, z) on the arch is $\delta(x, y, z) = 2 z$ [7 marks]

QUESTION TWO (20 MARKS)

a. For a conical pendulum as shown below. Prove that for unit radius r of the circular path $\tan \theta = \frac{v^2}{g}$ where is θ the angle of inclination

[4 marks]

against a step 0.1m high. What initial force is just sufficient to turn the drum so that it raises over the step

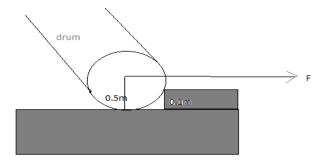
r rotating ball

- b. Differentiate coplanar forces from concurrent forces.
- c. Given the space curve x = t, $y = t^2$, $z = \frac{2}{3}t^3$ find
 - The curvature k and radius of curvature ρ i)
 - ii) The tortion τ
- d. A particle is moving along a straight line according to the law = $4t^3 + 3t + 2$. if the distance is x=4 cm when t=2 seconds ; find the distance when t=5 seconds and the acceleration of the particle at the same time. [5 marks]

QUESTION THREE (20 MARKS)

a.	State THREE uses of dimensional analysis	[3 marks]
b.	A particle moves in a circle of radius 20 m. if its tangential speed is 40m/s. find	
	i. The angular speed	[2 marks]
	ii. The angular and normal accelerations	[4 marks]
c.	Given $\emptyset = 2x^3y^2z^4$	
	i. Find $\nabla \cdot \nabla \phi$	[3 marks]
	ii. Show that $\nabla \cdot \nabla \emptyset = \nabla^2$ where	
	$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ is called the Laplacian Operator	[3 marks]
d.	Two particles have position vectors given by $r_1 = 4ti - 2t^2 - 5tk$ and	$r_2 =$
	$(2t^2 - t)i + t^3j - 4tk$. Find the relative velocity and acceleration of the second particle	e with to the
	first when t=3 seconds	[5 marks]

a. Figure below shows a drum of mass 150kg and radius 0.5m being pulled by a horizontal force F


Page 3

[4 marks]

[2 marks]

[5 marks]

[4 marks]

b. Find the work done in moving a particle once around a circle c in the x-y plane with center origin and radius three units by a force given by

$$F = (2x - y + z)i + (x + y - z^2)j + (3x - 2y + 4z)k$$

for $x = 3\cos\theta$ and $y = 3\sin\theta$. With θ changing from zero to $360^{\circ}(2\Pi)$

[6 marks]

c. A particle P projected from a point O on a horizontal plane with a speed of 72km/h at an angle Θ to the horizontal, where $\tan \Theta = \frac{4}{3}$. find

i.	Time taken for P to return to the plane	[3 marks]
ii.	Maximum time reached	[2 marks]
iii.	The range	[2 marks]
iv.	Speed after 2 seconds	[3 marks]

QUESTION FIVE (20 MARKS)

a.	Derive the dimensional expression for the second equation of motion	[3 marks]	
b.	A coil spring lies along the helix $r = (cos4t)i + (sin4t)j + tk$, $0 \le t \le 2\Pi$. The sp	2Π . The spring's density is	
	a constant, δ =1.find the springs mass, the coordinates of the spring's centre of mass and the		
	spring's moment of inertial and radius of gyration about Z axis.	[7 marks]	
c.	If $\emptyset(x, y, z) = 3x^2y - y^3z^2$ find $\nabla \emptyset$ at (1, -2,-1)	[4 marks]	
d.	A lorry of mass 200kg moving at10m/s on a horizontal surface is brought to rest in a distance of		
	12.5m by the brakes being applied.		

- i. Calculate the average retarding force F [3 marks]
- ii. What power must the engine produce if the lorry is to travel up a hill of 1 in 10 minutes at a constant speed 10m/s; if friction resistance is 200N. [3 marks]

THIS IS THE LAST PRINTED PAGE.