

Technical University of Mombasa

AMA: $\mathbf{4 1 0 2}$ / SMA: 2171 / SMA: 2177 - GEOMETRY

UNIVERSITY EXAMINATION FOR THE FIRST SEMESTER IN THE FIRST YEAR OF BACHELOR OF SCIENCE IN STATISTICS, MATHEMATICS AND COMPUTER SCIENCE, MECHANICAL, CIVIL, ELECTRICAL AND ELECTRONICS, MEDICAL ENGINEERING.

DECEMBER 2015: EXAMINATION

TIME: 2HOURS

Answer Question One And Any Other Two Questions.

Question One (30 marks) compulsory.

a) Find the shortest distance from the point $(2,3)$ to the line $5 x-12 y=52$.
b) Show that $\cos \theta+\cos 3 \theta+\cos 5 \theta+\cos 7 \theta=4 \cos \theta \cos 2 \theta \cos 4 \theta$
c) Find the equation of an ellipse whose vertices are the points $(-1,2)$ and $(9,2)$ while eccentricity is $2 / 3$.
d) Determine the length of a tangent from the point $(5,7)$ to the circle whose equation is $x^{2}+y^{2}-4 x-6 y+9=0$.
e) If $\sin A=3 / 5$ and $\cos B=15 / 17$ where A is obtuse and B acute, find the exact value of $\sin (A+B)$.
f) Two sides of an acute angled triangular piece of land are 48 m and 26 m respectively. If the area of the plot is $550 \mathrm{~m}^{2}$, find the length of a third side.

4 Marks
g) Evaluate $7 \cos \theta+2 \sin \theta=4$ if $0^{\circ} \leq \theta \leq 360^{\circ}$.
h) Find an equation for a hyperbola with asymptotes $y= \pm \frac{4}{3} x$ and foci $(\pm 10,0) . \quad 4$ Marks

Question Two (20 marks)

a) A 100 N weight hangs from cables as shown below:

Find the tension forces \vec{T}_{1} and \vec{T}_{2}.
7 Marks
b) Solve the equation $3 \cos 2 \theta+\sin \theta=1$ for values of $0 \leq \theta \leq 360$.

6 Marks
c) Find the points in which the lines $5 y=3 x-5$ cuts the hyperbola $4 x^{2}-25 y^{2}=15$ and the equations of the tangent to the hyperbola at these points.

7 Marks

Question Three (20 marks)

a) Plot accurately the graph of the polar equation $r=\sin 2 \theta$ and mark the lines of symmetry on the grid. How many lines of symmetry exist in this figure, where $0^{c} \leq \theta \leq 2 \pi^{c}$. 5 Marks
b) Solve the equation $12 \cos ^{2} \theta+\sin \theta=11$ on the domain $0^{\circ} \leq \theta \leq 360^{\circ}$.

5 Marks
c) Determine the point(s) of intersection of the line $2 y=x+6$ and the parabola $y^{2}=8 x$ hence find the equations of the tangent and normal lines at these intersection points.

7 Marks
d) Given an equation of a line in the form $\frac{x-2}{3}=\frac{y-4}{5}=\frac{z-7}{2}$ express it in the form
$\vec{r}=\vec{a}+t \vec{u}$ hence determine whether the point $(8,14,11)$ lies on the line.
3 Marks

Question Four (20 marks)

a) If $\vec{P}=2 i+3 j+4 k$ and $\vec{Q}=4 i-3 j+2 k$ where i, j, k are unit vectors, determine the angle between the vectors \vec{P} and \vec{Q}.

4 Marks
b) If $\tan A=\frac{3}{4}$ and $\csc B=\frac{17}{8}$ where A and B are acute angles, without first determining the value of the angles evaluate $\frac{3 \sin A+2 \cos A}{\sec B}$.
c) Find the eccentricity and semi-latus rectum of the ellipse $4 x^{2}+3 y^{2}=5$
d) Find the length of the tangent to the circle $x^{2}+y^{2}-2 x+4 y-4=0$ from the centre of the circle $x^{2}+y^{2}+6 x+8 y=0$.

Question Five (20 marks).

a) In a triangular lawn the length of two sides and there included angle are $\mathrm{a}=12 \mathrm{~m}, \mathrm{~b}=10 \mathrm{~m}$ and $\angle c=30^{\circ}$, calculate the radius of the circumcircle just touching the three corners.
b) Find an equation in the form $a x+b y+c=0$ for a line which passes through the point of intersection of the lines $x-3 y=4$ and $3 x+y=2$ being also perpendicular to the line $4 x-3 y-7=0$.
c) Discus the equation $x^{2}-4 y^{2}+2 x+8 y-7=0$ indicating all properties of the hyperbola hence sketch the curves showing the asymptotes, foci and vertex .
d) Find the Cartesian equation of the curve in polar form given as $r \cos (\theta-\pi / 3)=3 \quad 3$ Marks

THE END

