TECHNICAL UNIVERSITY OF MOMBASA

INSTITUTE OF COMPUTING AND INFORMATICS
DEPARTMENT OF COMPUTER SCIENCE \& INFORMATION TECHNOLOGY UNIVERSITY EXAMINATION FOR:
BACHELOR OF BUSINESS \& INFORMATION TECHNOLOGY/ BACHELOR
OF TECHNOLOGY IN INFORMATION TECHNOLOGY
EIT 4110: DISCRETE STRUCTURES
END OF SEMESTER EXAMINATION
SERIES:APRIL2016
TIME:2HOURS
DATE: Pick DateSelect MonthPick Year
\section*{Instructions to Candidates}
You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions. Attemptquestion ONE (Compulsory) and any other TWO questions.
Do not write on the question paper.

Question ONE

a) Define the following terms
i) A proposition
ii) A predicate
iii) Tautology
iv) Contradiction
b) Compute the truth table for the statement $[(p \wedge q) \vee r] \Rightarrow(\sim q)$. (8 marks)
c) State and explain the Pigeonhole principle.
(4 marks)
d) How many ways can a committee of three faculty members and two students be selected from seven faculty members and 8 students. Show your work.
e) Translate the following proposition into a sentence in English

Question TWO

Differentiate between the following terms
a) Permutation and combination
b) Random experiment and events
c) Elementary events and compound events
d) Mutually exclusive events and complementary events
e) Open sentence and logical reasoning

Question THREE

a) Prove that the statement $(p \rightarrow q) \vee(q \rightarrow p)$ is a tautology.
(6 marks)
b) Prove by mathematical induction that $1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$
(6 marks)
c) Given that $A=\{1,3,5,7,9,11,13,17\}, B=\{5,9,13,17\}$
i) Find $A-B$
(3 marks)
ii) Using Venn diagram to represent (i) above
(3 marks)
iii) Show using a diagram that set B is a proper subset of set A.
(2 marks)

Question FOUR

a) City residents were surveyed recently to determine readership of newspapers available. 50% of the residents read the morning paper, 60% read the evening paper, and 20% read both newspapers. Find the probability that a resident selected reads either the morning or evening paper or both the papers.
b) There are three factories J, K, L supplying goods to warehouses A, B, C and D, the amount of supplies from the factories to warehouses are shown below.

Warehouses	A	B	C	D	Total
Factory					
J	72	16	15	50	153
K	38	18	13	22	91
L	50	32	22	43	147
Total	160	66	50	115	391

Find the following
i) $J \cup A$
ii) $C \cup L$
iii) $K \cup D$
c) Write down a truth table to show that $\sim(p \vee q)$ is equivalent to $(\sim p) \wedge(\sim q)$.
(6 marks)

Question FIVE

a) A survey of 126 Kenyan students found that:

92 students are taking at least an English class
90 students are taking at least a Math class
68 students are taking at least a Science class
36 students are taking English, Math, and Science classes
68 students are taking at least English and Math classes
47 students are taking at least Math and Science classes
51 students are taking at least English and Science classes
i) Draw a Venn diagram to represent the above information.
ii) How many students are only taking an English class?
iii) How many are taking only Math and Science classes?
iv) How many students are not taking English, Math, or Science classes?
b) The table below specifies a Boolean function $f: S \times S \times S \longrightarrow S$.

x	y	z	$f(x, y, z)$
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Give a Boolean expression corresponding to this function.

