

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF MEDICAL ENGINEERING

UNIVERSITY EXAMINATION FOR:

BACHELOR OF TECHNOLOGY IN MEDICAL ENGINEERING

TMD 4201: BIOSENSORS AND TRANSDUCERS

SPECIAL/SUPPLEMENTARY EXAMINATION

SERIES: SEPTEMBER 2018

TIME: 2HOURS

DATE: Pick DateSep2018

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of **FIVE** questions. Attemptquestion ONE (Compulsory) and any other TWO questions. **Do not write on the question paper.**

Question ONE (COMPULSORY)

- a) Explain what is meant by:
 - i) active transducers,
 - ii) passive transducers, give examples of each. (4 Marks)
- b) Explain the construction and operation of the standard hydrogen electrode. Complement your explanation with the schematic diagram of the electrode. (9 Marks)
- c) Explain the construction and functioning of the combined electrode used for pH measurement. (12 Marks)
- d) A parallel-plate air-spaced capacitor has an effective plate area of $6.4 \times 10^{-4} m^2$, and the distance between the plates is 1 mm. if the relative permittivity for air is 1.0006, absolute permittivity is $8.85 \times 10^{-12} F/m$ calculate the displacement sensitivity of the device. (5 marks)

Question TWO

Figure Q2 shows an enzyme electrode from a glucose biosensor.

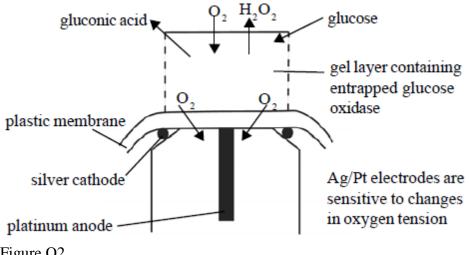


Figure Q2

- a) Explain what is meant by the term 'biosensor'. (2 Marks)
- b) This type of biosensor uses the immobilized enzyme 'glucose oxidase'. Describe the action of this enzyme and say why it is immobilised. (**3 Marks**)
- c) Describe how the biosensor works to measure blood glucose concentration. (5 Marks)
- d) How has the development of the glucose biosensor made life easier for sufferers from sugar diabetes? (2 Marks)
- e) Explain FOUR characteristics that a successful biosensor must possess (8 Marks)

Question THREE

- a) With reference to clinical biosensors, state the principle on which a thermistor works and give the mathematical expression of it. (8 marks)
- b) Explain the working principle of an LVDT. Draw the schematic diagram of an LVDT and explain its transfer characteristic. How will you extract phase and amplitude information for an LVDT (**12 Marks**)

Question FOUR

- a) Explain why a metal electrode, used for biopotential recording, is considered a transducer? (2 Marks)
- b) The Ag/AgCl (saturated KCl) reference electrode half-cell is useful in many electrochemical experiments, and it can be simply made in the lab. Explain how you could make a Ag/AgCl half-cell in the laboratory that could be used as a reference electrode for voltammetry. Include a labeled drawing and explain its operation. (8 Marks)

- c) Show how the Nernst equation can be used to prove that the potential of this reference half-cell electrode will be constant at constant T when contacting an electrolyte solution. (6 Marks)
- d) What are the characteristics of the Ag-AgCl electrode that make it suitable as a reference electrode for biomedical applications? (4 Marks)

Question FIVE

- a) What is the temperature in Fahrenheit of 20 °C? (2 Marks)
- b) Self-heating is one of the problems commonly encountered in the use of temperature sensors. Explain how self-heating affects the operation of thermistors and RTDs and how can it be avoided? (6 Marks)
- c) The Wheatstone bridge is an electrical circuit suitable for measuring sensors to work with low temperature sensitivity. Why? Show an example and explain its operation. (8 Marks)
- d) A temperature measuring system incorporates a platinum resistance thermometer, a Wheatstone bridge, a voltage amplifier, and a pen recorder. The individual sensitivities are as follows:

Transducer	0.35 Ω/ ⁰ C
Wheatstone bridge	0.01 V/Ω
Amplifier gain	100 V/V
Pen recorder	0.1 <i>cm/V</i>

i). Determine the overall sensitivity, and

ii). The temperature change corresponding to a recorder pen movement of 4 cm. (4 marks)