

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of applied and Health Sciences

DEPARTMENT OF MATHEMATICS AND PHYSICS

UNIVERSITY EXAMINATION FOR DEGREE IN:

BACHELOR OF SCIENCE IN CIVIL AND MEDICAL ENGINEERING

SMA 2471: NUMERICAL ANALYSIS

SPECIAL/ SUPPLIMENTARY EXAMINATIONS

SERIES: September 2018

TIME: 2 HOURS

Instructions to Candidates

You should have the following for this examination *-Answer Booklet, examination pass and student ID*

This paper consists of 5 questions. Question one is compulsory. Answer any other two questions **Do not write on the question paper.**

QUESTION ONE (30 marks)

a) Prove that $\left(\frac{\Delta^2}{E}\right)e^x \cdot \frac{Ee^x}{\Delta^2 e^x} = e^x$ the interval of differencing being h

(6 marks)

b) Given f(2) = 4, f(2.5) = 5.5 Find the linear interpolating polynomial using Aitkens iteration method and use it to find an approximate value of f(2.2)

(6 marks)

c) Using the data sin(0.1) = 0.09983 and sin(0.2) = 0.19867 Find an approximate Value of sin(0.15) by Lagrange interpolation.

(5 marks)

d) Given the following values of $f(x) = \log x$, find the approximate value of f'(2.0) using the method based on quadratic interpolation.

Х	2.0	2.2	2.6
log x	0.69315	0.78846	0.95551

e) Find the by Taylors series method to degree three the value of y at x = 0.1 correct to 5 decimal places from the differential equation $\frac{dy}{dx} = x^2y - 1$, y(0) = 1

(6 marks)

(2 marks)

f) Define interpolation

QUESTION TWO (20 marks)

a) Given that f(0) = 1, f(1) = 3, f(3) = 5.5. Find the unique polynomial of degree 2 or less which fits the given data. Hence evaluate the polynomial at 2.5 using Lagrange's fundamental polynomials.

(15 marks)

b) Solve the difference equation $(\Delta^2 - 3\Delta + 2)y_x = 0$

(5 marks)

QUESTION THREE (20 marks)

a) A slider in a machine moves along a fixed straight rod. Its distance x cm along the rod is given below for various values of the time t seconds. Find the velocity and acceleration of the slider when t=0.3 seconds.

t	0	0.1	0.2	0.3	0.4	0.5	0.6
х	30.13	31.62	32.87	33.64	33.95	33.81	33.24

(10 marks)

b) Given
$$\frac{dy}{dx} = x^2(1+y)$$
 and y(1)=1, y(1.2)=1.548, y(1.3)=1.979, evaluate y(1.4) using Milne's Predictor-Corrector method.

(10 marks)

QUESTION FOUR (20 marks)

- a) Given the differential equation $\frac{dy}{dx} = x y$ with the condition y(0) = 1. Use Picard's method to obtain y for x = 0.2 up to degree five correct to five places of decimal. (14 marks)
- b) Obtain the exact value for (a) above at x = 0.2

(6 marks)

QUESTION FIVE (20 marks)

a) Given $\frac{dy}{dx} = x + z$, $\frac{dz}{dx} = x - y^2$ with y(0) = 2, z(0) = 1. Obtain the first Taylors algorithm y_1 , z_1 for y(0.1), y(0.2)

(15 marks)

b) Given f(2) = 4, f(2.5) = 5.5. Find the linear interpolating polynomial using Newton's divided difference method and use it to find an approximate value of f(2.4)

(5 marks)