TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES
 DEPARTMENT OF MATHEMATICS \& PHYSICS
 UNIVERSITY EXAMINATION FOR: MECHANICAL AND PRODUCTION ENGINEERING

SMA 2371: PDE

SPECIAL/ SUPPLIMENTARY EXAMINATIONS

SERIES: September 2018
TIME: Two HOURS
DATE: September 2018

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions. Attempt QUESTION ONE AND ANY OTHER TWO QUESTIONS
Do not write on the question paper.

Question ONE

a) Find the general solution of the semi-linear equation $y^{2} \frac{\partial z}{\partial x}-x y \frac{\partial z}{\partial y}=x(z-2 y)$
b) Verify that $u=f(x-c t)+g(x+c t)$ is a solution of the one dimensional wave equation $u_{t t}=c^{2} u_{x x}$
c) Find the PDE by eliminating the arbitrary constants $z=(x-a)^{2}+(y-b)^{2}$ and state the order of the resulting PDE
d) Show that the direction cosines of the tangent at the point (x, y, z) to the conic $p x^{2}+q y^{2}+r z^{2}=1, x+y+z=1$ are proportional to $(q y-r z, r z-p x, p x-q y)$
e) Find the integral curves of the equations $\frac{d x}{x(y-z)}=\frac{d y}{y(z-x)}=\frac{d z}{z(x-y)}$
f) Solve the equation $\frac{\partial^{2} z}{\partial x^{2}}-2 \frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=0$ using the method of separation of variables

Question TWO

a) The ends A and B of a rod 20 cm long have the temperatures at $30^{\circ} \mathrm{c}$ and at $80^{\circ} \mathrm{c}$ until steady state prevails. The temperature of the ends are changed to $40^{\circ} c$ and $60^{\circ} c$ respectively. Find the temperature distribution in the rod at time t
b) Find the surface which is orthogonal to the one-parameter system $z(x+y)=c(3 z+1)$ orthogonally and which passes through the circles $x^{2}+y^{2}=1 ; z=1$

Question THREE

a) Find the integral curves of the equations $\frac{d x}{x+z}=\frac{d y}{y}=\frac{d z}{z+y^{2}}$
(6mks)
b) Solve the boundary-value problem $\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u, u(x, 0)=6 e^{-3 x}$ by the method of separation of variables (6 mks)
c) Find the orthogonal trajectories on the surface $x^{2}+y^{2}+2 f y z+d=0$ of its curves of intersection with planes parallel to the $x-y$ plane

Question FOUR

a) Form the PDE by eliminating the arbitrary function from $z=f\left(x^{2}-y^{2}\right)$
b) Find the Laplace transform of the function $f(x)=e^{-a x^{2}}$
c) Find the orthogonal trajectories on the cone $x^{2}+y^{2}=z^{2} \tan ^{2} \alpha$

Question FIVE

a) Find the integral curves of the equations $\frac{d x}{x^{2}-y^{2}-z^{2}}=\frac{d y}{2 x y}=\frac{d z}{2 x z}$
b) A string of length L is stretched between points $(0,0)$ and $(L, 0)$ on the x axis .At time $t=0$ it has a shape given by $f(x), 0 \leq x \leq L$ and it is released from rest .Find the displacement of the string at any latter time

