

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of applied and Health Sciences

DEPARTMENT OF MATHEMATICS AND PHYSICS

UNIVERSITY EXAMINATION FOR DEGREE IN:

BACHELOR OF SCIENCE IN CIVIL ENGINEERING/ BACHELOR OF SCIENCE IN MECHANICAL

ENGINEERING/ BACHELOR OF SCIENCE IN ELECTRICAL ENGINEERING

SMA 2370: CALCULUS 1V

SPECIAL/ SUPPLIMENTARY EXAMINATIONS

TIME: 2 HOURS

Instructions to Candidates

You should have the following for this examination *-Answer Booklet, examination pass and student ID*

This paper consists of 5 questions. Question one is compulsory. Answer any other two questions **Do not write on the question paper. QUESTION ONE-30 marks**

- (a) Express $\frac{dw}{dt}$ as a function of t if w = xy + z, $x = \cos t$, $y = \sin t$, z = t (5 marks)
- (b) Prove that $\nabla(F+G) = \nabla F + \nabla G$
- (c) Find the Taylors Polynomial $f_n(x)$ for the function $y = e^{2x}$ at x = 0 for n = 4 (5 marks)
- (d) Test whether the mean value theorem holds for the function $f(x) = x x^3$ on the interval (-2,1) and find the appropriate intermediate value (5 marks)
- (e) Find the tangent plane to the surface $z = e^{x^2 y^2}$ at (-1, 0, e) (5 marks)

©Technical University of Mombasa

(5 marks)

(f) Evaluate the double iterated integral
$$\int_{1}^{3} \int_{x^{\frac{1}{3}}}^{x} \frac{y^{2}}{x} dy dx$$
 (5 marks)

QUESTION TWO-20 marks

- (a) If $\vec{A} = (3x^2 + 6y)i 14yzj + 20xz^2k$. Evaluate $\int_{c} \vec{A} \cdot \vec{dr}$ from (0,0,0) to (1,1,1) along the path $x = t, y = t^2, z = t^3$ (8 marks)
- (b) Show that the Greens Theorem is true for the integral $\iint_{c} (-ydx + xdy)$ where c is the closed half circle path -1 < x < 1 and $y = \sqrt{1 x^2}$ (12 marks)

QUESTION THREE-20 marks

- (a) Evaluate the improper integral $\int_{1}^{\infty} (1-x)e^{-x}dx$ (8 marks)
- (b) Find and classify all critical points of the $f(x, y) = x^3 + y^3 3x 12y + 20$ (12 marks)

QUESTION FOUR-20 marks

- (a) Evaluate $\iint_{R} x^{2} xy + y^{2} dA$ where R is the ellipse given by $x^{2} xy + y^{2} = 2$ and using the transformation $x = \sqrt{2}u \sqrt{\frac{2}{3}}v$, $y = \sqrt{2}u + \sqrt{\frac{2}{3}}v$ (12 marks)
- (b) Find the equation of the plane tangent to the surface $3x^2 + y^2 z^2 = -20$ at the point $p_o(1,2,3)$ (8 marks)

QUESTION FIVE-20 marks

(a) Find $\nabla \phi$ if $\phi = \log |\vec{r}|$ (10 marks)

©Technical University of Mombasa

Page 2 of 3

		2	4-2.	x 4 - 2x -	v	
(b)	Evaluate the iterated triple integral	\int_{0}	\int_{0}	\int_{0}	6 <i>xydzdydx</i>	(10 marks)