TECHNICAL UNIVERSITY OF MOMBASA

Faculty of applied and Health Sciences
DEPARTMENT OF MATHEMATICS AND PHYSICS

UNIVERSITY EXAMINATION FOR DEGREE IN:
 bACHELOR OF SCIENCE IN CIVIL ENGINEERING/ BACHELOR OF SCIENCE IN MECHANICAL
 engineering/ bachelor of science in electrical engineering

SMA 2370: CALCULUS 1V

SPECIAL/ SUPPLIMENTARY EXAMINATIONS
 TIME: 2 HOURS

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of 5 questions. Question one is compulsory. Answer any other two questions Do not write on the question paper. QUESTION ONE-30 marks
(a) Express $\frac{d w}{d t}$ as a function of t if $w=x y+z, x=\cos t, y=\sin t, z=t$ (5 marks)
(b) Prove that $\nabla(F+G)=\nabla F+\nabla G$
(c) Find the Taylors Polynomial $f_{n}(x)$ for the function $y=e^{2 x}$ at $x=0$ for $n=4$
(d) Test whether the mean value theorem holds for the function $f(x)=x-x^{3}$ on the interval $(-2,1)$ and find the appropriate intermediate value
(e) Find the tangent plane to the surface $z=e^{x^{2}-y^{2}}$ at ($-1,0, e$)
(f) Evaluate the double iterated integral $\int_{1}^{3} \int_{x^{\frac{1}{3}}}^{x} \frac{y^{2}}{x} d y d x$

QUESTION TWO-20 marks

(a) If $\vec{A}=\left(3 x^{2}+6 y\right) i-14 y z j+20 x z^{2} k$. Evaluate $\int_{c} \vec{A} \cdot \overrightarrow{d r}$ from $(0,0,0)$ to $(1,1,1)$ along the path $x=t, y=t^{2}, z=t^{3}$
(b) Show that the Greens Theorem is true for the integral $\int_{c}(-y d x+x d y)$ where c is the closed half circle path $-1<x<1$ and $y=\sqrt{1-x^{2}}$

QUESTION THREE-20 marks

(a) Evaluate the improper integral $\int_{1}^{\infty}(1-x) e^{-x} d x$
(b) Find and classify all critical points of the $f(x, y)=x^{3}+y^{3}-3 x-12 y+20$

QUESTION FOUR-20 marks

(a) Evaluate $\iint_{R} x^{2}-x y+y^{2} d A$ where R is the ellipse given by $x^{2}-x y+y^{2}=2$ and using the transformation $x=\sqrt{2} u-\sqrt{\frac{2}{3}} v, \quad y=\sqrt{2} u+\sqrt{\frac{2}{3}} v$
(b) Find the equation of the plane tangent to the surface $3 x^{2}+y^{2}-z^{2}=-20$ at the point $p_{o}(1,2,3)$
(8 marks)

QUESTION FIVE-20 marks

(a) Find $\nabla \phi$ if $\phi=\log |\vec{r}|$
(10 marks)
(b) Evaluate the iterated triple integral $\int_{0}^{2} \int_{0}^{4-2 x} \int_{0}^{4-2 x-y} 6 x y d z d y d x$

