

TECHNICAL UNIVERSITY OF MOMBASA

INSTITUTE OF COMPUTING AND INFORMATICS

Select department

UNIVERSITY EXAMINATION FOR:

BSCE/SEP2016/J-FT

SMA 2174: INTRODUCTION TO COMPUTER SCIENCE SPECIAL/SUPPLEMENTARY EXAMINATION

SERIES: SEPTEMBER 2018

TIME:2HOURS

DATE: Sep2018

Instructions to Candidates

You should have the following for this examination

-Answer Booklet, examination pass and student ID

This paper consists of **FIVE** questions. Attemptquestion ONE (Compulsory) and any other TWO questions. Do not write on the question paper.

Ouestion ONE

(a) Explain the approach to solving a problem referred to as divide and conquer

(4 marks)

- (b) identify and explain two forms of divide and conquer for problem solving (6 marks)
- c) Explain the term recursion as applies to computer science
- (2 marks)
- d) Outline seven(7) levels of abstraction in a computer
- (7 marks)
- e)Briefly explain the use of computing language

- (1marks)
- f) Explain the three components for construction of a computing language (6 marks)

Question TWO

- a) Explain why computing systems are designed around discrete values instead of continuous ones (4 marks)
- b) How relevant is knowledge of computer science to an Architect? (2marks)
- c) Distinguish among the following terms in computer science:

(i) Procedure (2marks)

(ii) **Process** (2marks)

(iii) Algorithm (2marks)

c) Contrast between computer science and Engineering

(4 marks)

(b) How is recursion used in the definition of Grammar in Backus Neu Form in computer science (4 marks)

Ouestion Three

a) Explain the following terms in programming

(i) Expression (ii) Primitive	(2 marks) (2 mar	rks)
(iii) operand	(2 marks	8)
iv) data abstraction		(2 marks)
b)Outline the structural relationship	b between von neuman comput (4 marks)	er model and programming languages
c) (i) Explain what concerns the abstra (5 marks)	action levels of programming langu	uages
(ii) What instructions do the machine	code encode	(3 marks)
Question Four		
~	ocessing of each of the following	data structures
(i) List		(2 marks)
(ii) Tree		(2 marks)
(iii) Dictionary		(2 marks)
(iv) Array		(2 marks)
(v) Queue		(2 marks)
(vi) Stack		(2 marks)
b) Differentiate between Depth	-first and Breath-first tree search	algorithm
(4 marks)		
c)Identify and explain the data str (4marks)	ucture used by each of the Depth	-first and Breath-first in the search
Question Five		
(a) Explain the primitive operations do	one by the processor	(5 marks)
Move data		
Comparison		
Arithmetic		
Store		
Jump		
b) The languages above the machine I	anguage are abstractions to the m	nachine language.
Explain the three different translators understandable to the processor	s used to translate the abstraction (6marks)	languages into machine language
(c) Explain the finite state model of a	process of computing	(9 marks)