

## TECHNICAL UNIVERSITY OF MOMBASA

# Institute of Computing & Informatics

### UNIVERSITY EXAMINATION FOR

## BACHELORS OF SCIENCE IN INFORMATION TECHNOLOGY BSIT/SEP2015/J-FT Y3S1

#### ICS 2301 DESIGN & ANALYSIS OF ALGORITHMS SPECIAL/SUPPLEMENTARY EXAMINATION

### SERIES: SEPTEMBER 2018

## **TIME: 2 HOURS**

**Instructions to Candidates** You should have the following for this examination *-Answer Booklet, examination pass and student ID* **This paper consists of Five questions. Attempt Question One and any two other Do not write on the question paper.** 

### **Question ONE**

#### **QUESTION ONE**

| a) | Give any four considerations for the choice of an algorithm.                     | [4marks]   |
|----|----------------------------------------------------------------------------------|------------|
| b) | Define asymptotic notations, hence distinguish between asymptotic notation and   |            |
|    | conditional asymptotic notation.                                                 | [6marks]   |
| c) | Describe the design paradigm "Dynamical Programming", which problem of           | loes it    |
|    | address and in which situations can it be used?                                  | [6marks]   |
| d) | State any three reasons why algorithms can be considered as a technology         | [3 marks]  |
| e) | What is the formula for the variable $count$ in terms of $n$ after the following | algorithm- |
|    | fragment is executed?                                                            | [5 marks]  |
|    | (1) $count = 0;$                                                                 |            |
|    | (2) For $i = 1$ through $n$ do                                                   |            |
|    |                                                                                  |            |

- (3) For p = 1 through 3 do
- (5) For k = 1 through *i* do
- (4)  $\operatorname{count} = \operatorname{count} +1;$

end for loops;

| f)                                                                        | Consider the following statements in the pseudo code below, what list of elements would |                  |  |  |
|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------|--|--|
|                                                                           | be in the array B.                                                                      | [4marks]         |  |  |
|                                                                           |                                                                                         |                  |  |  |
| Decla                                                                     | are B[6] as integers                                                                    |                  |  |  |
| Index                                                                     | $\mathbf{x} = 0$                                                                        |                  |  |  |
| DOW                                                                       | VHILE Index < 6                                                                         |                  |  |  |
|                                                                           | B[index] = index*2                                                                      |                  |  |  |
|                                                                           | Index = index + 1                                                                       |                  |  |  |
| END                                                                       | DO                                                                                      |                  |  |  |
| g)                                                                        | Differentiate between apriori and aposteriori analysis of an algorithm                  | [2marks]         |  |  |
| ~                                                                         |                                                                                         |                  |  |  |
| QUE                                                                       | <u>ESTION TWO</u>                                                                       |                  |  |  |
| a) i) ]                                                                   | Define space and time complexities of an algorithm.                                     | [4marks]         |  |  |
| ii) Bı                                                                    | ring out the necessity of time and space complexity analysis with suitable e            | examples         |  |  |
|                                                                           |                                                                                         | [6marks]         |  |  |
| b) i)V                                                                    | Write the algorithm for bubble sort                                                     | [6marks]         |  |  |
| ii) Aj                                                                    | pply the algorithm in question b) i) above to sort the list of elements $5, 1, 4$       | 4, 2, 8 in       |  |  |
| ascer                                                                     | nding order                                                                             | [4 Marks]        |  |  |
|                                                                           |                                                                                         |                  |  |  |
| QUE                                                                       | ESTION THREE                                                                            |                  |  |  |
| a)                                                                        | Define the following terms                                                              | [6 marks]        |  |  |
|                                                                           | i. Algorithm                                                                            |                  |  |  |
|                                                                           | ii. An instance of a problem                                                            |                  |  |  |
|                                                                           | iii. loop invariant                                                                     |                  |  |  |
| b)                                                                        | Explain the various Asymptotic notations used in algorithm design?                      | [6marks]         |  |  |
| c) Explain the time complexity of the following algorithm-fragment in ter |                                                                                         | ns of <i>n</i> . |  |  |
|                                                                           |                                                                                         | [4marks]         |  |  |
|                                                                           | .(1) For $i = 1$ through $n$ do                                                         |                  |  |  |
|                                                                           | .(2) For $j = i$ through $i+3$ do                                                       |                  |  |  |
|                                                                           | .(3) -constant number of steps-                                                         |                  |  |  |
|                                                                           | end for loops;                                                                          |                  |  |  |
|                                                                           |                                                                                         |                  |  |  |

d) Explain any two areas in computing where algorithms can be used. [2marks]

e) Below is a Pseudo code algorithm that illustrates the calculation of the mean (average) of a set of n numbers, Calculate the computing time for this algorithm in terms of input size

[2marks]

n.

- 1. n = read input from user
- 2. Sum = 0
- 3. i = 0
- 4. While i < n
- 5. Number = read input from user
- 6. Sum = sum + number
- 7. i = i + 1
- 8. Mean = sum / n

# **QUESTION FOUR**

| a)                   | Differentiate between Deterministic and Non Deterministic algorithms.                                                                                                         | [4mark]                |  |  |  |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--|--|--|
| b)                   | <ul><li>i) Write an algorithm to merge sort using divide and conquer strategy</li><li>ii)Trace the algorithm in question b, i) above for the input set{4,7,1,3,8,5}</li></ul> | [6marks]<br>.[4 Marks] |  |  |  |
| c)                   | Describe the steps in design and analysis of algorithms                                                                                                                       | [6marks]               |  |  |  |
| <b>QUESTION FIVE</b> |                                                                                                                                                                               |                        |  |  |  |
| a)                   | Compute the big-Oh running time of the following code segment:                                                                                                                | [2marks]               |  |  |  |

a) Compute the big-Oh running time of the following code segment:

```
for (i = 2; i < n; i++) {
```

sum += i;

}

- b) State any two factors that influence the running time of an algorithm [2marks]
- c) i)Write an algorithm for the selection sort. [6marks]ii) Calculate the computing time for this algorithm in terms of input size n, [4marks]
- d) Write the algorithm for insertion sort and analyze its time complexity for the best and the worst case.
  [6marks]