

FACULTY OF APPLIED AND HEALTH SCIENCES

DEPARTMENT OF MATHEMATICS \& PHYSICS
 UNIVERSITY EXAMINATION FOR:

UNIVERSITY EXAMINATION FOR THE FIRST SEMESTER IN THE SECOND
YEAR OF BACHELOR OF SCIENCE IN INFORMATION TECHNOLOGY
ICS 2211: NUMERICAL LINEAR ALGEBRA

SPECIAL/ SUPPLIMENTARY EXAMINATIONS SERIES: SEPTEMBER 2018

TIME: 2HOURS

DATE: Pick Date SEPTEMBER 2018

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions. Attempt question ONE (Compulsory) and any other TWO questions.
Do not write on the question paper.
QUESTION ONE (30 MARKS)
(a) Find the rank of $B=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 3 & 2 \\ 2 & 3 & 2 \\ 4 & 3 & 2\end{array}\right)$.
(b) Describe the term 'the transpose of a matrix'. Hence verify that
$(A B)^{T}=B^{T} A^{T}$ if $A=\left(\begin{array}{rr}2 & 3 \\ 1 & -4\end{array}\right)$ and $B=\left(\begin{array}{rr}3 & 0 \\ -1 & 5\end{array}\right)$.
(4mks)
(c) If $A=\left(\begin{array}{cc}x & 3 \\ 2 & 2 x+1\end{array}\right)$, find the value(s) of x for which A is singular.
(4mks)
(d) Compute $A B$ and $B A$ if possible given that

$$
A=\left(\begin{array}{rcc}
1 & -3 & 0 \\
-2 & 5 & -8
\end{array}\right), C=\left(\begin{array}{rrr}
8 & 5 & 3 \\
-3 & 10 & 2 \\
2 & 0 & -4
\end{array}\right) . \text { Hence make any relevant conclusion. }
$$

(e) Find the inverse of

$$
B=\left(\begin{array}{ccc}
3 & 4 & 5 \\
1 & -1 & 2 \\
2 & 1 & 3
\end{array}\right)
$$

by reducing the augmented matrix $[B / I]$ to canonical form.
(5mks)
(f) Find the eigenvalues and the corresponding eigenvectors of the matrix $A=\left(\begin{array}{rr}3 & 2 \\ -1 & 0\end{array}\right)$ (5mks)
(g) Consider the linear system

$$
\begin{aligned}
& k x+y+z=1 \\
& x+k y+z=1 \\
& x+y+k z=1
\end{aligned}
$$

For what values of k does the system have no solution?
(5mks)

QUESTION TWO (20 MARKS)

(a) Use elimination method to solve the following system of linear equations

$$
\begin{aligned}
& 2 x-4 y+6 z=20 \\
& 3 x-6 y+z=22 \\
& -2 x+5 y-2 z=-18
\end{aligned}
$$

(6mks)
(b) Use Cramer's rule to solve

$$
\begin{align*}
& 3 x-y+z=5 \tag{7mks}\\
& 2 x+2 y+3 z=4 \\
& x+3 y-z=11
\end{align*}
$$

(c) Use Gauss-Jordan elimination method to solve

$$
\begin{aligned}
& w+x+y+z=4 \\
& w+2 x-y-z=7 \\
& 2 w-x-y-z=8 \\
& w-x+2 y-2 z=-7
\end{aligned}
$$

QUESTION THREE (20 MARKS)

(a) Find the value of t such that the determinant of $A=\left(\begin{array}{ccc}t+3 & 0 & 0 \\ 5 & t-3 & 1 \\ 6 & -6 & t+4\end{array}\right)$ is zero. (4 mks)
(b) Given that $3\left(\begin{array}{ll}x & y \\ z & w\end{array}\right)=\left(\begin{array}{cc}x & 6 \\ -1 & 2 w\end{array}\right)+\left(\begin{array}{cc}4 & x+y \\ z+w & 3\end{array}\right)$, find the values of x, y, z and w.
(5mks)
(c) If $A=\left(\begin{array}{ll}1 & 0 \\ 4 & 5\end{array}\right)$ and $B=\left(\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right)$, verify that $(A B)^{-1}=B^{-1} A^{-1}$.
(5mks)
(d) If $A=\left(\begin{array}{ccc}6 & -2 & 0 \\ 9 & -1 & 1 \\ 3 & 7 & 5\end{array}\right)$ find the $L U$-decomposition of A.

QUESTION FOUR (20 MARKS)

(a) Use inverse matrix method to solve the system

$$
\begin{align*}
& x+2 y+3 z=5 \\
& 2 x+5 y+3 z=3 \tag{9mks}\\
& x+8 z=17
\end{align*}
$$

(a) Use Jacobi iterative method to find the approximate solution for the following system correct to 4 d.p Take the initial approximate to be $x_{1}=0, x_{2}=0$ and $x_{3}=0$ for four iterations only.

$$
\begin{align*}
& 20 x_{1}-x_{2}+x_{3}=20 \\
& 2 x_{1}+10 x_{2}-x_{3}=11 \tag{11mks}\\
& x_{1}+x_{2}-20 x_{3}=-18
\end{align*}
$$

QUESTION FIVE (20 MARKS)

(a) The solution to a system of equations having the form $A X=B$ can be found by matrix multiplication.

$$
X=\left(\begin{array}{ccc}
0 & -1 & 1 \\
-1 & 1 & 2 \\
1 & 0 & -2
\end{array}\right)\left(\begin{array}{l}
3 \\
2 \\
4
\end{array}\right)
$$

(i) Find the matrix A.
(ii) Find the original system of equations.
(iii) Find the solution of the system.
(b) Solve the following system by Gauss- Seidel iteration. Approximate the solution to $4 d . p$. Take the initial approximate to be $x_{1}=0, x_{2}=0$ and $x_{3}=0$ for three iteratives only.

$$
\begin{align*}
& 10 x_{1}+x_{2}+2 x_{3}=3 \\
& x_{1}+10 x_{2}-x_{3}=1.5 \tag{9mks}\\
& 2 x_{1}+x_{2}+10 x_{3}=-9
\end{align*}
$$

