

# **TECHNICAL UNIVERSITY OF MOMBASA**

## FACULTY OF ENGINEERING AND TECHNOLOGY

### DEPARTMENT OF MEDICAL ENGINEERING

## **UNIVERSITY EXAMINATION FOR:**

## DIPLOMA IN MEDICAL ENGINEERING

## **APS 2150: PHYSICAL SCIENCE FOR ENGINEERS**

### SPECIAL/SUPPLEMENTARY EXAMINATION

## **SERIES:** SEPTEMBER 2018

## TIME: 2HOURS

DATE: Pick DateSep2018

Instructions to Candidates You should have the following for this examination *-Examination pass and student ID* This paper consists of five questions. Attempt any THREE questions. Do not write on the question paper.

#### **QUESTION ONE**

- a) Balance the following chemical equations:-
  - (i) Ag NO<sub>3</sub>  $\rightarrow$  Ag<sub>2</sub>O + NO<sub>2</sub> + O<sub>2</sub>
  - (ii)  $CuSO_4 + KI \rightarrow CuI + I_2 + K_2SO_4$
  - (iii) Pb  $(NO_3)_2 + K_2 CrO_4 \rightarrow PbCr^04 + KNO_3$
  - (iv)  $NaOH + H_2SO_4 \rightarrow Na_2SO_4 + H_2O$  (10marks)
- b) An Iron ring has a cross-sectional area of 0.005m<sup>2</sup> and a mean length of 1.2m. It is uniformly wound with a coil of 900 turns. If a current of 2A in the coil produces a flux density of 1.1T in the ring, calculate.
  - (i) The total flux in the iron
  - (ii) The magnetic field strength
  - (iii) The relative permeability of the iron under these conditions

(10marks)

(1mark)

- c) (i) Distinguish between **isothermal change** and **isobaric change** 
  - (ii) An aluminium pan of mass 0.5kg and containing 3kg of water is heated from 10°C to 100°C. Calculate the amount of heat received by the pan and its Contents. Assume the specific heat capacity of water and aluminium are 4200 J/Kg°C and 920 J/Kg°C, respectively. (10marks)

#### **QUESTION TWO**

- a) Define **wave**
- b) Describe
  - (i) Transverse wave
  - (ii) Longitudinal wave (4marks)
- c) State **five** conditions necessary for the establishment of a stationary wave (5Marks)
- d) Explain an experiment which can be used to determine the wavelength in air of the note emitted by a tuning fork (10marks)

#### **QUESTION THREE**

| a)            | Define <b>resonance</b>                                                                             |                                                                                                                                                                                                                      | (1mark)                                                  |
|---------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| b)            | State three degrees of damping                                                                      |                                                                                                                                                                                                                      | (3marks)                                                 |
| c)            | Calculate the length of cord needed for a simple pendulum to have a period time of 2 seconds (4mark |                                                                                                                                                                                                                      | ve a periodic<br>(4marks)                                |
| d)            | A body of mass 2kg<br>maximum restoring<br>oscillation is 800mm<br>(i)<br>(ii)<br>(iii)             | oscillates in a straight line with simple harmonic<br>force applied to the mass is 200N and the amplit<br>n. Calculate<br>the frequency<br>the time for one oscillation<br>the maximum acceleration<br>QUESTION FOUR | motion. The<br>tude of the<br><b>(12marks)</b>           |
| a)            | Sketch structures fo<br>(i)<br>(ii)                                                                 | r<br>methanol<br>ethanol                                                                                                                                                                                             | (2marks)                                                 |
| b)            | State<br>(i)<br>(ii)<br>(iii)                                                                       | <b>One</b> characteristic of aromatic compounds<br>The main source of organic compounds<br>The systematic names for the cyclo-alkane<br>C <sub>7</sub> H <sub>14</sub>                                               | es C <sub>7</sub> H <sub>13</sub> and<br><b>(4marks)</b> |
| c)            | Compare and contra<br>(i)<br>(ii)                                                                   | ast<br>alkanes and alkenes<br>saturated hydrocarbons and unsaturated hydr                                                                                                                                            | ocarbons<br><b>(6marks)</b>                              |
| d)            | Explain the fraction                                                                                | al distillation of crude oil                                                                                                                                                                                         | (8marks)                                                 |
| QUESTION FIVE |                                                                                                     |                                                                                                                                                                                                                      |                                                          |
| a)            | State any <b>three</b> met                                                                          | (3marks)                                                                                                                                                                                                             |                                                          |

- b) With the aid of a labelled diagram, explain the structure of an element with atomic number 14 and mass number 28 (7marks)
- c) Explain the basis of nuclear reactions. (10marks)