TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF MEDICAL ENGINEERING
 UNIVERSITY EXAMINATION FOR:

 DIPLOMA IN MEDICAL ENGINEERING APS 2150: PHYSICAL SCIENCE FOR ENGINEERS SPECIAL/SUPPLEMENTARY EXAMINATIONSERIES: SEPTEMBER 2018
TIME: 2HOURS
DATE: Pick DateSep2018

Instructions to Candidates

You should have the following for this examination
-Examination pass and student ID
This paper consists of five questions. Attempt any THREE questions.
Do not write on the question paper.

QUESTION ONE

a) Balance the following chemical equations:-
(i) $\quad \mathrm{Ag} \mathrm{NO}_{3} \rightarrow \mathrm{Ag}_{2} \mathrm{O}+\mathrm{NO}_{2}+\mathrm{O}_{2}$
(ii) $\mathrm{CuSO}_{4}+\mathrm{KI} \rightarrow \mathrm{CuI}+\mathrm{I}_{2}+\mathrm{K}_{2} \mathrm{SO}_{4}$
(iii) $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{K}_{2} \mathrm{CrO}_{4} \rightarrow \mathrm{PbCr}^{0} 4+\mathrm{KNO}_{3}$
(iv) $\mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$
(10marks)
b) An Iron ring has a cross-sectional area of $0.005 \mathrm{~m}^{2}$ and a mean length of 1.2 m . It is uniformly wound with a coil of 900 turns. If a current of 2 A in the coil produces a flux density of 1.1T in the ring, calculate.
(i) The total flux in the iron
(ii) The magnetic field strength
(iii) The relative permeability of the iron under these conditions
(10marks)
c) (i) Distinguish between isothermal change and isobaric change
(ii) An aluminium pan of mass 0.5 kg and containing 3 kg of water is heated from $10^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$. Calculate the amount of heat received by the pan and its Contents. Assume the specific heat capacity of water and aluminium are $4200 \mathrm{~J} / \mathrm{Kg}^{\circ} \mathrm{C}$ and $920 \mathrm{~J} / \mathrm{Kg}^{\circ} \mathrm{C}$, respectively. (10marks)

QUESTION TWO

a) Define wave
(1mark)
b) Describe
(i) Transverse wave
(ii) Longitudinal wave
(4marks)
c) State five conditions necessary for the establishment of a stationary wave
(5Marks)
d) Explain an experiment which can be used to determine the wavelength in air of the note emitted by a tuning fork
(10marks)

QUESTION THREE

a) Define resonance
b) State three degrees of damping
c) Calculate the length of cord needed for a simple pendulum to have a periodic time of 2 seconds
(4marks)
d) A body of mass 2 kg oscillates in a straight line with simple harmonic motion. The maximum restoring force applied to the mass is 200 N and the amplitude of the oscillation is 800 mm . Calculate
(i) the frequency
(ii) the time for one oscillation
(iii) the maximum acceleration
(12marks)

QUESTION FOUR

a) Sketch structures for
(i) methanol
(ii) ethanol
(2marks)
b) State
(i) One characteristic of aromatic compounds
(ii) The main source of organic compounds
(iii) The systematic names for the cyclo-alkanes $\mathrm{C}_{7} \mathrm{H}_{13}$ and $\mathrm{C}_{7} \mathrm{H}_{14}$
(4marks)
c) Compare and contrast
(i) alkanes and alkenes
(ii) saturated hydrocarbons and unsaturated hydrocarbons
(6marks)
d) Explain the fractional distillation of crude oil
(8marks)

QUESTION FIVE

a) State any three methods used to detect X -rays
(3marks)
b) With the aid of a labelled diagram, explain the structure of an element with atomic number 14 and mass number 28
c) Explain the basis of nuclear reactions.

