

TECHNICAL UNIVERSITY OF MOMBASA FACULTY OF APPLIED AND HEALTH SCIENCES DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR:

BACHELOR OF TECHNOLOGY IN RENEWABLE ENERGY (BTRE &BACHELOR OF TECHNOLOGY IN APPLIED PHYSICS

APS 4307: MATHEMATICAL PHYSICS.

SPECIAL/ SUPPLIMENTARY EXAMINATIONS

SERIES: SEPTEMBER 2018

TIME:2HOURS

DATE: SEPTEMBER 2018

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of 4 questions. Attempt question 1 and any other two questions

Do not write on the question paper.

Question 1 [30 marks]

a) Show that if f(p) is the Laplace transform of f(x) i. e. $f(p) = L\{f(x)\}$, then the Laplace transform of

$$\frac{f(x)}{x}$$
 is given by $\frac{d}{dp}\left(L\left\{\frac{f(x)}{x}\right\}\right) = -f(p)$ [4 marks]

Hence determine the Laplace transform for the functions

ii.
$$f(x) = \frac{e^{-a_x}}{x^{1/2}}$$
 [5 marks]

©Technical University of Mombasa

Page 1 of 4

and

iii.
$$f(x) = \frac{e^{-a_{x}^{2}}}{x^{3/2}}$$
 [3 marks]

b) Express the following integral in terms of gamma function(s)

$$\int_{0}^{\infty} e^{-x^{3}} x^{5} dx \qquad [4 \text{ marks}]$$

c) Show that the following set of matrices form a representation of the cyclic group $C_4 = (A, A^2, A^3, A^4 = E)$

$$D(A) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, D(A^2) = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, D(A^3) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \text{ and } D(E) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

[5 marks]

x	$y = e^{-x^2}$	Δ	Δ^2	Δ^3	Δ^4
0	1.00000				
0	1.00000				
0.05	0.99750	-250			
0.10	0.99005	-745	-495		
0.15	0.97775	-1230	-485	+10	
0.20	0.960679	-1696	-486	+19	+9
0.25	0.93941	-2138	-442	+24	+5
0.30	0.91393	-2548	-410	+32	+8

d) Interpolate the value of $y = e^{-x^2}$ for the value of x = 0.2862 using the Table 1 below

[5 marks]

e) Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ for $y = e^{-x^2}$ at the point x = 0.05 from the data of Table 1 above [Amarks]

[4marks]

Question 2 [20 marks]

a) Find the inverse Laplace transform of
$$F(P) = \frac{2}{p^4} + \frac{3}{p^2 + 4}$$
 [5marks]

©Technical University of Mombasa

Page 2 of 4

f) Evaluate the integral $f(x) = \int_{0}^{\infty} \frac{\sin xt}{t} dt$ using Laplace transform [5 marks]

g) Solve $y'' + 2y' + y = e^{-x} \sin x$ using Laplace transform with y(0) = 0 and y'(0) = 3

[10 marks]

Question 3 [20 marks]

- a) A sphere of radius *a* is centered at O. It is cut into two equal halves by the x-y plane. The upper part is maintained at a potential $+V_0$ and the lower part at potential $-V_0$. Calculate the potential at a point inside the sphere int the following steps:
- i. Write the Laplace's equation satisfied by the potential in spherical coordinates and make use of separation of variables to separate it into the φ -, θ -, and *r*-equations [4marks]
- ii. Solve the φ -, θ -, and *r*-equations
- iii. Make use of the boundary conditions to find the potential [5marks]
- b) Using the table given below, evaluate the integral $\int_{0}^{1} \frac{x^{3}}{e^{x}-1} dx$ using Simpson's one

third rule.

[6marks]

[5 marks]

x	$f(x) = \frac{x^3}{e^x - 1}$
0	0
0.25	0.055013
0.50	0.192687
0.75	0.377686
1.00	0.581977
1.25	0.784280
1.50	0.969357

Question 4 [20 marks]

- a) Define the following
- i. Subgroup
- ii. Isomorphism

©Technical University of Mombasa

[2 marks] [2marks]

iii. Unitary matrix	[2marks]
iv. Hermitian matrix	[2marks]
v. A faithful representation	[2marks]
b.Show that the set of all positive and negative integers including zero	form a group
under addition	[5marks]

Question 5 [20 marks]

a) Construct the Green's function for the problem stated mathematically as

 $\frac{d^2y}{dx^2} + \omega^2 y = f(x)$ where f(x) is a known function and y satisfies the boundary

conditions
$$y(0) = 0$$
 and $y(L) = 0$ [10marks]

- b) Determine the Laplace transforms for
- i. The error function[6 marks]ii. The complimentary error function[4marks]

©Technical University of Mombasa