

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES
 DEPARTMENT OF MATHEMATICS \& PHYSICS UNIVERSITY EXAMINATION FOR:

BACHELOR OF TECHNOLOGY IN RENEWABLE ENERGY (BTRE \&BACHELOR OF TECHNOLOGY IN APPLIED PHYSICS

APS 4307: MATHEMATICAL PHYSICS.

SPECIAL/ SUPPLIMENTARY EXAMINATIONS
 SERIES: SEPTEMBER 2018
 TIME:2HOURS

DATE: SEPTEMBER 2018

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of 4 questions. Attempt question 1 and any other two questions
Do not write on the question paper.

Question 1 [30 marks]
a) Show that if $f(p)$ is the Laplace transform of $f(x)$ i. e. $f(p)=L\{f(x)\}$, then the Laplace transform of
$\frac{f(x)}{x}$ is given by $\frac{d}{d p}\left(L\left\{\frac{f(x)}{x}\right\}\right)=-f(p)$
Hence determine the Laplace transform for the functions
ii. $f(x)=\frac{e^{-a / x}}{x^{1 / 2}}$
iii. $f(x)=\frac{e^{-a / x}}{x^{3 / 2}}$
b) Express the following integral in terms of gamma function(s)

$$
\int_{0}^{\infty} e^{-x^{3}} x^{5} d x
$$

[4 marks]
c) Show that the following set of matrices form a representation of the cyclic group $C_{4}=\left(A, A^{2}, A^{3}, A^{4}=E\right)$

$$
D(A)=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), D\left(A^{2}\right)=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right), D\left(A^{3}\right)=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \text { and } D(E)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),
$$

[5 marks]
d) Interpolate the value of $y=e^{-x^{2}}$ for the value of $x=0.2862$ using the Table 1 below

x	$y=e^{-x^{2}}$	Δ	Δ^{2}	Δ^{3}	Δ^{4}
0	1.00000				
0.05	0.99750	-250			
0.10	0.99005	-745	-495		
0.15	0.97775	-1230	-485	+10	
0.20	0.960679	-1696	-486	+19	+9
0.25	0.93941	-2138	-442	+24	+5
0.30	0.91393	-2548	-410	+32	+8

[5 marks]
e) Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ for $y=e^{-x^{2}}$ at the point $x=0.05$ from the data of Table 1 above [4marks]

Question 2 [20 marks]

a) Find the inverse Laplace transform of $F(P)=\frac{2}{p^{4}}+\frac{3}{p^{2}+4}$
f) Evaluate the integral $f(x)=\int_{0}^{\infty} \frac{\sin x t}{t} d t$ using Laplace transform
g) Solve $y^{\prime \prime}+2 y^{\prime}+y=e^{-x} \sin x$ using Laplace transform with $y(0)=0$ and $y^{\prime}(0)=3$ [10 marks]

Question 3 [20 marks]

a) A sphere of radius a is centered at O. It is cut into two equal halves by the x-y plane. The upper part is maintained at a potential $+\mathrm{V}_{0}$ and the lower part at potential $-\mathrm{V}_{0}$. Calculate the potential at a point inside the sphere int the following steps:
i. Write the Laplace's equation satisfied by the potential in spherical coordinates and make use of separation of variables to separate it into the $\varphi-, \theta-$, and r-equations
[4marks]
ii. Solve the $\varphi-, \theta-$, and r-equations
iii. Make use of the boundary conditions to find the potential [5marks]
b) Using the table given below, evaluate the integral $\int_{0}^{1} \frac{x^{3}}{e^{x}-1} d x$ using Simpson's one third rule.
[6marks]

x 苼	$f(x)=\frac{x^{3}}{e^{x}-1}$
0	0
0.25	0.055013
0.50	0.192687
0.75	0.377686
1.00	0.581977
1.25	0.784280
1.50	0.969357

Question 4 [20 marks]
a) Define the following
i. Subgroup
[2 marks]
ii. Isomorphism
iii. Unitary matrix
[2marks]
iv. Hermitian matrix
[2marks]
v. A faithful representation
[2marks]
b.Show that the set of all positive and negative integers including zero form a group under addition

Question 5 [20 marks]

a) Construct the Green's function for the problem stated mathematically as $\frac{d^{2} y}{d x^{2}}+\omega^{2} y=f(x)$ where $f(x)$ is a known function and y satisfies the boundary conditions $y(0)=0$ and $y(L)=0$
[10marks]
b) Determine the Laplace transforms for
i. The error function
[6 marks]
ii. The complimentary error function [4marks]

