TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES DEPARTMENT OF MATHEMATICS \& PHYSICS UNIVERSITY EXAMINATION FOR:
 BACHELOR OF SCIENCE IN FISFERIES AND OCEANOGRAPHY.
 APS 4109: FUNDAMENTALS OF PHYSICS
 SPECIAL/ SUPPLIMENTARY EXAMINATIONS
 SERIES: SEPTEMBER 2018
 TIME: 2 HOURS

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions.
Answer question one COMPULSORY and any other TWO questions.
This paper consists of Choose No questions.
Do not write on the question paper.
Where necessary take:

- Acceleration due to gravity, $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
- Permittivity of free space, $\varepsilon_{0}=8.85 \times 10-{ }^{12} \mathrm{~F} / \mathrm{M}$
- Charge on electron, $=-1.602 \times 10^{-19} \mathrm{C}$
- Mass of an electron, $\mathrm{Me}=9.1 \times 10^{-31} \mathrm{~kg}$
- Speed of light in a vacuum, $\mathrm{c}=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$

Question One (compulsory) 30 marks

a) (i) State two limitations of dimensional analysis.
(ii) Experiments indicate that the speed c of an ocean wave is effectively independent of amplitude and for long wave length it is independent of surface tension. Suppose we write
$C \propto g^{x} \lambda^{y} \rho^{z}$ then $C=k g^{x} \lambda^{y} \rho^{z}$ where k is a dimensionless constant. Find the values of x, y and z .
b) (i) Define frequency and state its S.I unit.
(ii)A wave of wave length 3 mm travels with a speed of $300 \mathrm{~m} / \mathrm{s}$. Determine its frequency (2marks)
c) State and explain two factors that affect the resistance of metallic conductors. (2marks)
(d) Figure 1 shows an electric circuit with a battery of e.m.f 3 V .

Calculate:-
i) Total resistance of the circuit.
(ii) Current through each resistor.
e. (i) Differentiate between kinetic energy and gravitational potential energy.
ii) A trolley of mass 2.0 kg is pulled from rest by a horizontal force of 5.0 kg for 1.2 seconds. Assuming that the surface is smooth, calculate
I) The distance covered by the trolley.
II) Kinetic energy gained by the trolley
f. What is the magnitude of the electric field \mathbf{E} such that an electron, placed in the field, would experience an electrical force equal to its weight?
g. State two factors that affect the magnitude of induced emf in coil.

Question Two (20 marks)

a) (i) State the Newton's laws of motion.
(4 marks)
(ii)A block of mass m_{2} is on an inclined plane is joined to a mass m_{1} by a cord over a frictionless pulley as shown in the figure 2 below. The block slides on a frictionless surface and the effects of the pulley are negligible. Show that that acceleration is given by
$a=\left(\frac{m_{1}-m_{2} \sin \theta}{m_{1}+m_{2}}\right) g$

Figure2
b) (i) State the law of conservation of linear momentum.
(ii) A body A of mass 5 kg moving with a velocity of $3 \mathrm{~m} / \mathrm{s}$ collides head-on with another body B of mass 4 kg moving in the opposite direction at $6 \mathrm{~m} / \mathrm{s}$. If after the collision the bodies move together, calculate the common velocity, v .

Question three (20 marks)

a) Differentiate between longitudinal wave and transverse waves giving an example in each case.
b) The equation represent $y=12 \sin (50 t-20 x)$ a plane wave travelling in the positive x - axis. Find
(i)The frequency a plane of the wave.
(ii) The wave length of the wave.
(iii) The speed of the wave.
c) (i) A body moving in a circular path with a constant speed is said to be accelerating.
Explain.
(ii) The moon revolves around the earth in a nearly circular path of radius $382,400 \mathrm{~km}$ from the centre of the earth once in 27.3 days. Calculate the speed of the moon in m / s. (4 marks)
(iii)How faster is the moon accelerating towards the centre of the earth?
(2 marks)

Question four. (20 marks)

a) (i) Differentiate between a conductor and an insulator.
(ii) A rectangular carbon block has dimensions $1.0 \mathrm{~cm} \times 1.0 \mathrm{~cm} \times 50 \mathrm{~cm}$. What is the resistance measured between the square ends?
(iii)What is resistance measured between the opposite rectangular faces? (Take the resistivity of carbon at $20^{\circ} \mathrm{C}$ to be $3.5 \times 10^{-5} \Omega \mathrm{~m}$)
(b) Two point charges $\mathrm{q}_{1}=+20 \mathrm{nC}$ and $\mathrm{q}_{2}=-75 \mathrm{nC}$ are separated by a distance of 3.0 cm . Find the magnitude and direction of electric force that q_{1} exert on q_{2}.
c) (i)Define electromagnetic induction.
ii)A flat coil of a wire with 50 turns and a cross-sectional area of $50 \mathrm{~cm}^{2}$ is placed in a magnetic field with its plane perpendicular to the magnetic $B=0.45 \mathrm{~T}$. If the field is changing at the rate of $0.04 \mathrm{~T} / \mathrm{S}$, find the magnitude of the induced e.m.f at the terminal of the coil.

Question Five (20 marks)

a) Define the term capacitance of a capacitor.
(1 mark)
b) State two factors affecting capacitance of parallel plate capacitor.
(2 marks)
c) The circuit below, figure 3 ,shows three capacitors $\mathrm{C}_{1}=2 \mu \mathrm{~F}, \mathrm{C}_{2}=2 \mu \mathrm{~F}$ and $\mathrm{C}_{3}=2 \mu \mathrm{~F}$ are connected to a 12 V source. Calculate

12 V
i.the effective circuit capacitance.
ii. the charge stored in each capacitor.
d) A $10 \mu \mathrm{~F}$ capacitor is charged by 80 V supply and then connected across an uncharged capacitor of $20 \mu \mathrm{~F}$. Calculate
(i) The final p.d across each capacitor.
(ii) The final charge on each capacitor.
(iii) The initial and final energy stored by each capacitor.

