

Faculty of Engineering and Technology

DEPARTMENT OF ELECTRICAL & ELECTRONIC ENGINEERING UNIVERSITY EXAMINATIONS FOR DIPLOMA IN TECHNOLOGY (ELECTRICAL & ELECTRONIC ENGINEERING)

ETI 2201

DATA COMMUNICATIONS I

END OF SEMESTER EXAMINATION

SERIES: AUGUST 2019

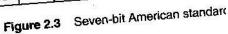
TIME: 2 HOURS

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of **five** Questions Attempt any THREE Questions. **Do not write on the question paper.**

QUESTION ONE

a)	i) Draw a block diagram of a data communication system and Explain its operation										
	ii)	ii) State the functions of the Universal Asynchronous Receiver Transmitter (UAI									
						(8 marks)					
b)	Explain the role of the following standard organizations and give an example of a standard developed by each of them and its application										
		i) ISO IEEE		ii)	IEEE	(6 marks)					
c)	Explain any TWO the functions of each of the following layers of the OSI model;										
	i)	physical layer	ii)	Data link laye	r iii)Ne	twork layer					
						(6 marks)					
d)	Describe the term protocol as applied in data communication and Explain the key										
	elements of a protocol										


QUESTION TWO

- a) i) Define the term **data transparency** and state how it is achieved in character oriented transmission schemes
 - ii) Distinguish between asynchronous and synchronous transmission and give an application of each (8 marks)
- b) Explain how the bit and frame synchronization are implemented in the following transmission control schemes
 - i) Character oriented
 - i) Bit oriented schemes (4 marks)
- c) i) Use figure 2.3 (ASCII code) to encode the following characters
 - I) 2 II) X III) @ IV) ACK
 - ii) Decode the following ASCII message

1010011 1001001 1010100

(4 marks)

					22			-		1	0	T	1		0 1	1	4
5	_	-	٦	5	T	0	1		0		0	+	0	1	1	1	1
Bits		12	6	t	01	0		1	1	-	-+	1	+	11	1		
==		Ŧ	_	5	+	0	0	Γ	0	0				╞	≑ =†	=	7
2	1	3	4	ł	1	===	DLE	F	SP	0		0	P	1		<u>р</u>	4
1	۶Į	0	0	1				+	-	1		A	Q		a	<u>q</u>	-
1	5	0	0	1	S	OH	DC1	+	<u></u>	2	+	В	R		b		_
đ	1	0	0	Ţ	S	TX	DC2	+		3	+	C	S	Т	C	5	-
1	1	lo	to	5	E	TX	DC3	4			+	D	TT	-1	d		<u>ا</u>
0	0	1	ħ	5	Ti	EOT	DC4	1	\$	4	+	-	10	-			u
-	_	ti	ł	0	\mathbf{t}	ENQ	NA	K	%	5	_	E	$+\overline{}$	+	f	t^{-}	v
1	0	1	÷	-	4	ACK	SY	NT	81	6		F				+	w
0	1	11	+	0	₽	BEL	TET	-+		7		G	1.V	_	<u> </u>	╉─	<u></u>
1	1	1	1	0	4		CA	-1	1	8	Т	H		<u>×</u>	h	+-	
0	10) l	0	1	1	BS	-	-	\vdash	1 9	1	1	T.	Υ	L	+	Y
1	1	51	0	1	11	нт	E	_	+	+	-+	J		Z	1		z
10	t	1	0	1		LF	SI	JB	Ļ	-+:		K	+	1	K		{
H	-	1	0	Ŀ	T	VT	E	SC	+	+-'	_		-+-	T			1
H	-+	0	1	┢	1	FF	TF	S		1	<		-+-	$\frac{1}{1}$	m	1	}
- 1-		_	h	╋	1	CF	1	SS	Τ-		=	N	-+-		+	-+	
- 1-	1	0		+	-	s	-+-	RS	1.		>	L M	<u>+</u>	^	<u> </u>	-+	DE
1	0	1	1		1	s	-+-	US	+		7	10		_	<u></u>	<u></u>	

- d) A message comprising one hundred and twenty 8- bit characters is to be transmitted over a data link ,Determine the total number of redundant bits required when using;
- Asynchronous transmission control scheme with one start bit and two stop bits per character and single start of frame and single end of frame character per message.
- ii) Synchronous transmission control scheme employing two SYN control characters and a single Start of frame (STX) and single end of frame

(ETX) character per message (4 marks)

QUESTION THREE

- a) Explain any THREE factors that influence the choice of a line code scheme for data communication (6marks)
 b) Explain the bit stream 0001100111 using each of the following line codes
- b) i) Encode the bit stream 0001100111 using each of the following line codes
 - I) Manchester II) differential Manchester III) AMI
 - ii) State any ONE application of each one of the line codes in b (i) (9marks)
- c) i) Explain the term violations as applied in line coding
 - ii) State any TWO advantages of the biphase coding schemes
 - iii) Decode the B8ZS encoded signal shown in figure 1 (5marks)

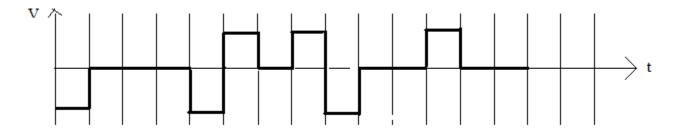


figure 1

QUESTION FOUR

a)		With the aid of sketches , describe the following digital modulation methods							
		i)	ASK	ii)	BFSK			(4 ı	marks)
	Assur	ne the	data signal is gi	ven by	0110001				
b)	i)	Disting	guish between	phase c	oherent a	nd phase o	differential I	PSK modu	lations
	ii)	Explaiı	n any TWO adv	vantage	s of PSK				
	iii)	draw t	he constellatio	n diagra	am of 16-0	QAM (3 an	12, plitudes	2 phases)	(6marks)
c)	Draw a	a circuit	diagram of BF	SK mod	lulator and	d Explain i	ts operation	ı	(8 marks)
d)		SK signal is transmitting at 36000 bps using full duplex mode ,determine the dwidth required per channel given that the two carriers are separated by 1600 Hz							
									(2marks)
QUEST		/E							
a)	i)		With the aid c components c			-	xplain the fu	unctions c	of the main

- ii) List any FOUR advantages of fiber optic cables (10marks)
- b) With the aid of sketches, Describe the following types of optical fibers
 - i) stepped index ii) graded index (6marks)
- c) It is required to transmit a 100MHz analogue signal over an optical fiber link of length 5km.The input power is 3dBm at the source and the output received power is -20dBm.

The following losses are given;

Reflection loss =	0.35dB				
Numerical aperture loss	=	12dB			
Safety Margin	=	1.5dB			

Output coupling losses = 0.5dB

Calculate

- i) attenuation loss of fibre
- ii) allowable loss per km of the cable

(4 marks)

©Technical University of Mombasa