

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology Department of Mechanical & Automotive Engineering UNIVERSITY EXAMINATION FOR: DIPLOMA IN MARINE ENGINEERING EMR 2301 : ENGINEERING MATH V SPECIAL/ SUPPLIMENTARY EXAMINATIONS SERIES: SEPTEMBER2018 TIME: 2 HOURS DATE: Pick DateSep2018

Instruction to Candidates:

You should have the following for this examination

- Answer booklet
- Non-Programmable scientific calculator

This paper consists of **FIVE** questions. Attempt question **ONE** and any other **TWO** questions.

Maximum marks for each part of a question are as shown.

Do not write on the question paper.

Question ONE(30mks)

a) Evaluate $\int_{0}^{0.4} x ln(1 + x) dx$ using Maclaurin theorem correct to 3dp (8mks)

b) Given $\stackrel{A}{\sim}$ =3i-2j+k , $\stackrel{B}{\sim}$ = 5i - 7j - 6k Find i) A.B (2mks) AXB (3mks)

c)If A= $(y^4 - x^2Z^2)i + (x^2 + y^2)j - x^2yZk$ determine curl A at the point (1,3,-2) (6mks)

d) Given A =
$$\begin{pmatrix} 2 & 8 & 6 \\ 3 & 4 & 1 \end{pmatrix}$$
 and B = $\begin{pmatrix} 2 & 0 \\ 3 & 5 \\ 1 & 9 \end{pmatrix}$

Find $(B.A)^T$

(2mks)

e) Use Newton Gregory formula of backward interpolation to calculate f(1.9)

Х	0.1	0.6	1.1	1.6	2.1
F(x)	1.1052	1.8221	3.0042	4.953	8.1662
(6mks)					

f) Given
$$\stackrel{A}{\sim}$$
 = 2i-3j-k
 $\stackrel{B}{\sim}$ = 2i+j+3k
 $\stackrel{C}{\sim}$ = 3i+j+4k

Determine (A.C) B(3mks)

Question TWO (20mks)

a) Given A= $\begin{pmatrix} 4 & 5 & 1 \\ 1 & -2 & -3 \\ 3 & -1 & -2 \end{pmatrix}$ Find A⁻¹(10mks) b) Find the Taylor series of $\frac{1}{1-x}$ about a=2 (7mks) c) Given $\stackrel{A}{\sim}$ =2i+j+3k $\stackrel{B}{\sim}$ =-3i+2j+k $\stackrel{C}{\sim}$ =i-j+3k Determine (A.C) B-(A.B) C (3mks)Type equation here.

Question THREE (20mks)

a) Forces in three members of framework are F_1F_2 and F_3 and related as below solve for F_1F_2 and F_3 using Cramer's rule

$$2F_1 + 3F_2 - 4F_3 = 26$$
$$F_1 - 5F_2 - 3F_3 = 87$$

 $-7F_1 + 2F_2 + 6F_3 = 12(14 \text{mks})$

b) Use Maclaurin series to find the expansion of $(2+x)^4$ (6mks)

Question FOUR (20mks)

a) Find the root of the equation $x^3 - 5x - 40 = 0$ using Newton Raphson method. Take $x_0 = 4(12 \text{mks})$

b) Given $A=x^2y^2i + x^{3y}Zj - yZk$

Find

i) Div A(3mks)

(5mks)

Question FIVE (20mks)

a) Using determinant method solve the following simultaneous equation 3x+4y+z=10 2x-3y+5z+9=0 x+2y-z=6 (15mks)

b) Given
$$\stackrel{A}{\sim}$$
 = -2i+j-2k
 $\stackrel{B}{\sim}$ =6i-4j+k
 $\stackrel{C}{\sim}$ =-5i-3j+4k
Determine (A X B) XC(5mks)