TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology
 Department of Mechanical \& Automotive Engineering
 UNIVERSITY EXAMINATION FOR:
 DIPLOMA IN MARINE ENGINEERING
 EMR 2301 : ENGINEERING MATH V SPECIAL/ SUPPLIMENTARY EXAMINATIONS
 SERIES: SEPTEMBER2018
 TIME: 2 HOURS
 DATE: Pick DateSep2018

Instruction to Candidates:

You should have the following for this examination

- Answer booklet
- Non-Programmable scientific calculator

This paper consists of FIVE questions. Attempt question ONE and any other TWO questions.
Maximum marks for each part of a question are as shown.
Do not write on the question paper.

Question ONE(30mks)

a) Evaluate $\int_{0}^{0.4} x \ln (1+x) d x$ using Maclaurin theorem correct to 3 dp (8mks)
b) Given ${ }_{\sim}^{A}=3 i-2 j+\mathrm{k} \quad, \quad{ }_{\sim}^{B}=5 i-7 j-6 k \quad$ Find
i) A.B $\quad(2 \mathrm{mks})$

AXB (3mks)
c)If $\mathrm{A}=\left(y^{4}-x^{2} Z^{2}\right) i+\left(x^{2}+y^{2}\right) j-x^{2} y Z k$ determine curl A at the point (1,3,-2) (6mks)
d) Given $\mathrm{A}=\left(\begin{array}{lll}2 & 8 & 6 \\ 3 & 4 & 1\end{array}\right)$ and $\mathrm{B}=\left(\begin{array}{ll}2 & 0 \\ 3 & 5 \\ 1 & 9\end{array}\right)$

Find (B.A) ${ }^{T}$
e) Use Newton Gregory formula of backward interpolation to calculate f(1.9)

X	0.1	0.6	1.1	1.6	2.1
$\mathrm{~F}(\mathrm{x})$	1.1052	1.8221	3.0042	4.953	8.1662

(6mks)
f) Given $\sim_{\sim}^{A}=2 i-3 j-k$
$\underset{\sim}{B}=2 \mathrm{i}+\mathrm{j}+3 \mathrm{k}$
${ }_{\sim}^{C}=3 \mathrm{i}+\mathrm{j}+4 \mathrm{k}$
Determine (A.C) B(3mks)
Question TWO (20mks)
a) Given $A=\left(\begin{array}{ccc}4 & 5 & 1 \\ 1 & -2 & -3 \\ 3 & -1 & -2\end{array}\right)$

Find $A^{-1}(10 \mathrm{mks})$
b) Find the Taylor series of $\frac{1}{1-x}$ about $a=2$
c) Given $\underset{\sim}{A}=2 i+j+3 k$

$$
\begin{aligned}
& {\underset{\sim}{\sim}}_{\sim}^{\sim}-3 \mathrm{i}+2 \mathrm{j}+\mathrm{k} \\
& C_{\sim}^{C}=\mathrm{i}-\mathrm{j}+3 \mathrm{k}
\end{aligned}
$$

Determine (A.C) B-(A.B) C

Question THREE (20 mks)

a) Forces in three members of framework are $F_{1} F_{2}$ and F_{3} and related as below solve for $F_{1} F_{2}$ and F_{3} using Cramer's rule

$$
\begin{gathered}
2 F_{1}+3 F_{2}-4 F_{3}=26 \\
F_{1}-5 F_{2}-3 F_{3}=87
\end{gathered}
$$

$-7 F_{1}+2 F_{2}+6 F_{3}=12(14 \mathrm{mks})$
b) Use Maclaurin series to find the expansion of $(2+x)^{4}(6 \mathrm{mks})$

Question FOUR (20mks)

a) Find the root of the equation $x^{3}-5 x-40=0$ using Newton Raphson method. Take $x_{0}=4(12 \mathrm{mks})$
b) Given $\mathrm{A}=x^{2} y^{2} i+x^{3} y Z j-y Z k$

Find
i) Div $\mathrm{A}(3 \mathrm{mks})$

Question FIVE (20mks)

a) Using determinant method solve the following simultaneous equation $3 x+4 y+z=10$
$2 x-3 y+5 z+9=0$
$x+2 y-z=6$
(15mks)
b) Given $\underset{\sim}{A}=-2 \mathrm{i}+\mathrm{j}-2 \mathrm{k}$
${ }_{\sim}^{B}=6 \mathrm{i}-4 \mathrm{j}+\mathrm{k}$
${ }_{\sim}^{C}=-5 \mathrm{i}-3 \mathrm{j}+4 \mathrm{k}$
Determine (A X B) XC(5mks)

