TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology
Department of Mechanical \& Automotive Engineering
UNIVERSITY EXAMINATION FOR:
Diploma in Marine Engineering
EMR 2211 : Engineering Mathematics IV
END OF SEMESTER EXAMINATION
SERIES: AUGUST 2019
TIME: 2 HOURS
DATE: 15 Aug 2019

Instruction to Candidates:

You should have the following for this examination

- Student I.D. Card \& Examination Pass
- Answer booklet
- Non-Programmable scientific calculator

This paper consists of FIVE questions. Attempt question ONE and any other TWO questions.
Maximum marks for each part of a question are as shown.
Do not write on the question paper.

Question ONE

a) i) Evaluate $\int \frac{2 x^{4}-3 x^{2}}{4 x} d x$
ii) Determine $\int \frac{2 x}{\sqrt{4 x^{2}-1}} d x$
iii) Find $\int \sin ^{2} t \cos ^{4} t d t$
b) i) Given $\mathrm{z}=\frac{x}{y}$ find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$
ii) Determine the differential coefficient of $\cot x$
iii) Differentiate from first principles $\mathrm{y}=\frac{1}{2 x}$
c) Probability of three events happening are $\frac{1}{8}$ for event $A, \frac{1}{5}$ for event B, and $\frac{2}{7}$ for event C. determine:
i) Probability of only event A happening
(2 marks)
ii) Probability of event A or event C happening but not B

Question TWO

a) A production department has 35 similar milling machines. The number of breakdowns on each machine averages 0.06 per week. Determine the probabilities of having:
(i) One machine breaking down in any week
(ii) Less than three machines breaking down in any week
b) Continuous random variable x has pdf where

$$
f(x)=\left\{\begin{array}{lc}
k(x+2)^{2} & -2 \leq x \leq 0 \\
4 k & 0 \leq x \leq 1 \frac{1}{3} \\
0 & \text { otherwise }
\end{array}\right.
$$

i) Find the value of constant k
(4 marks)
ii) Find $\mathrm{P}(-1 \leq x \leq 1)$
iii) $P(x>1)$
c) Discrete random variable W has probability distribution as shown

W	-3	-2	-1	0	1
$P(W=w)$	0.1	0.25	0.3	0.15	d

Find:
i) Value of d
ii) $P(-3 \leq w<0)$
iii) $P(w>-1)$

Question THREE

a) Given $4 x^{3}+2 x-\frac{1}{3 x^{2}}+\frac{1}{\sqrt{x}}-7$ find $\frac{d y}{d x}$
b) Determine the coordinates of point on the graph $y=x^{2}+x-6$ where the gradient is -1.
c) Given $y=2 x e^{-3 x}$ show that $\frac{d^{2} y}{d x^{2}}+6 \frac{d y}{d x}+9 y=0$
d) Determine the turning points of the graph $y=\frac{x^{3}}{3}-\frac{x^{2}}{2}-6 x+\frac{5}{3}$ and distinguish between them.
(8 marks)

Question FOUR

a) Using integration by parts, evaluate $\int 2 e^{x} \sin 3 x d x$
b) Find $\int \frac{2 x^{2}-9 x-35}{(x+1)(x-2)(x+3)} d x$
c) Evaluate $\int_{1}^{3}(4 x-3)^{2} d x$

Question FIVE

a) The mean height of 500 people is 170 cm and standard deviation is 9 cm . Assuming the heights are normally distributed, determine the number of people likely to have heights between 150 cm and 195 cm .
b) The parametric equations of function are $y=3 \cos 2 t, x=2 \sin t$. Find:
i) $\frac{d y}{d x}$
ii) $\frac{d^{2} y}{d x^{2}}$
c) Given $y=4 x^{2}-x$. Determine approximate change in y if x changes from 1 to 1.02
(3 marks)
d) The length l metres of metal rod at temperature $\theta^{\circ} \mathrm{C}$ is given by $l=1+0.00005 \theta+0.0000004 \theta^{2}$. Determine rate of change of length in $\mathrm{mm} /{ }^{\circ} \mathrm{C}$ when temperature is $100^{\circ} \mathrm{C}$ and $400^{\circ} \mathrm{C}$

