TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology
Department of Mechanical \& Automotive Engineering
UNIVERSITY EXAMINATION FOR:
DIPLOMA IN MARINE ENGINEERING
EMR 2201 : ENGINEERING MATH III
SPECIAL/ SUPPLIMENTARY EXAMINATIONS
SERIES: SEPTEMBER 2018
TIME: 2 HOURS
DATE: Sep2018

Instruction to Candidates:

You should have the following for this examination

- Answer booklet
- Non-Programmable scientific calculator

This paper consists of FIVE questions. Attempt question ONE and any other TWO questions.
Maximum marks for each part of a question are as shown.
Do not write on the question paper.

Question ONE(30mks)

a)Evaluate $\quad\left(\frac{1+j 3}{1-j 2}\right)^{2}(4 \mathrm{mks})$
b)Prove that $1+2 \sinh ^{2} x=\cosh 2 x$
c) Find the sum of the first 7 terms of the series $\frac{1}{2}, 1 \frac{1}{2}, 4 \frac{1}{2}, 13 \frac{1}{2} \ldots \ldots \ldots \ldots \ldots \ldots \ldots . \quad(3 \mathrm{mks})$
d)Reduce the equation to quadratic and solve for x
$\frac{1}{2}\left(e^{x}+e^{-x}\right)=1.5 \quad(8 \mathrm{mks})$
e) Express (6, 5.5 rad$)$ in Cartesian coordinates (3mks)
f) Evaluate $(2+j 3)(-4-5 j)$
g) Evaluate tanh 5.2.

Question TWO (20mks)
a) Evaluate $(2+\mathrm{j} 3)+(3-\mathrm{j} 4)$ using argand diagram (5mks)
b) Express $(-14+j 3)^{-\frac{2}{5}}$ in polar form.Give your answer in degree and minutes (8 mks)
c) Given $A e^{x}+B e^{-x}=4 \operatorname{chx}-5 \operatorname{shx}$. Determine values of A and B
d) Express the complex number $\mathrm{Z}=2+\mathrm{j} 3$ in polar form

Question THREE (20mks)

a) Solve the following equation simultaneously (10 mks)
$\frac{1}{x}+\frac{2}{y}+\frac{3}{z}=6$
$\frac{2}{x}+\frac{3}{y}+\frac{4}{z}=8$
$\frac{3}{x}+\frac{2}{y}+\frac{2}{z}=5$
b) The first, twelfth and last term of an arithmetic progression are $4,31 \frac{1}{2^{\prime}}$ and $376 \frac{1}{2}$ respectively. Determine
i)Number of terms in the series (5 mks)
ii)Sum of all terms in the series (3mks)
c) Evaluate sinh 1.2

Question FOUR (20mks)

a) Find sum of the five terms in the series
8,-4, 2,-1 \qquad (3mks)
b) Express in polar form leaving answers in surd form
$(-2+\mathrm{j})^{3}(6 \mathrm{mks})$
c) Solve for x given
$\log _{4} x+\frac{4}{\log _{4} x}=5 \quad$ (7mks)
d) Solve for x and y given
$2(x+j y)=6+2 j$ (4mks)

Question FIVE (20MKS)
A) Prove the identity $\sin 3 x=\sin x-4 \sin ^{3} x$ (7mks)
b) Given $Z_{1}=1-3 \mathrm{j}, Z_{2}=-2+\mathrm{j} 5$ and $Z_{3}=-3-\mathrm{j} 4$. Determine in Cartesian form
$\frac{Z_{1} z_{3}}{Z_{1}+Z_{2}}$ (6 mks)
C)In Geometric progression the $6^{\text {th }}$ term is 8 times the $3^{r d}$ term and sum of the $7^{\text {th }}$ and $8^{\text {th }}$ term is 192.Determine
i) The common ratio
(2mks)
ii) The first term
(2mks)
iii) The sum of the $5^{\text {th }}$ of the $11^{\text {th }}$ term inclusive

