TECHNICAL UNIVERSITY OF MOMBASA
A Centre of Excellence
Faculty of Applied \& Health Sciences
DEPARTMENT OF MATHEMATICS AND PHYSICS
SEPTEMBER 2018 SERIES EXAMINATION
EMG 2414: NUMERICAL METHODS FOR ENGINEERS

BSME/BEME

TIME ALLOWED: 2HOURS

INSTRUCTIONTO CANDIDATES:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consists of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
QUESTION ONE (30 MARKS) COMPULSORY
a. A production company produces depending on demand. The production of a special component shall follow the demand below. Find the average demand per day over 10 days period based on

Demand per day	4	5	6	7	8
probability	0.10	0.15	0.25	0.30	0.20

With random numbers 419205446607000000146220079564260648
(4 marks)
b. If $\quad A A^{-1}=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Find $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$
(2 marks)
c. Using Romberg's integration method, find the value if starting with trapezoidal rule for the given tabular values below given $h=0.8$ for $\frac{h}{2}, \frac{h}{4}, \frac{h}{8}$

x	1	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8

$\mathrm{Y}=\mathrm{f}(\mathrm{x})$	1.543	1.669	1.811	1.971	2.151	2.352	2.577	2.8228	3.107

d. Evaluate
$\int_{0}^{1} \frac{1}{1+x} d x$ Using Trapezoidal rule for $\mathrm{n}=1$ and state the error bound
e. Find λ for $\left(\begin{array}{cc}\lambda & \lambda \\ 3 & \lambda-2\end{array}\right)=0$
f. Consider the system of equations $\frac{d y}{d t}=y+3 z$

$$
\frac{d z}{d t}=3 y+z
$$

i. Write in the normal form
ii. Find Eigen values and Eigen vectors
iii. Prove that the solutions are independent
iv. Hence, obtain a general solution
g. Given

$$
\frac{d y}{d t}=\frac{y-t}{y+t}
$$

With the initial condition $y=1$ at $t=0$
Find an approximate value of y at $x=0.1$, in five steps using Euler's method.

QUESTION TWO (20 MARKS)

a. Define linear independence of functions
b. Obtain Picard's second approximate solution of the initial value problem $\frac{d y}{d x}=\frac{x^{2}}{y^{2}+1}, y(0)=0$
c. Find the inverse of the matrix A by Gaussian method

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 3 \\
5 & 5 & 1
\end{array}\right)
$$

d. Solve the initial value problem

$$
\frac{d y}{d x}=x^{2}-y \quad y(0)=1
$$

With $\mathrm{h}=0.2$ on the interval $(0,0.4)$ using the fourth order Runge-Kutta Method.

$$
\begin{aligned}
& \text { With } y_{n+1}=y_{n}+\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) \\
& \text { where } k_{1}=h f\left(t_{n}, y_{n}\right) \\
& k_{2}=h f\left(t_{n}+\frac{h}{2}, y_{n}+\frac{k_{1}}{2}\right) \\
& k_{3}=h f\left(t_{n}+\frac{h}{2}, y_{n}+\frac{k_{2}}{2}\right) \\
& \quad k_{4}=h f\left(t_{n}+h, y_{n}+k_{3}\right)
\end{aligned}
$$

a. Determine the ad joint of a matrix A if

$$
A=\left(\begin{array}{ccc}
1 & 5 & -2 \\
3 & -1 & 4 \\
-3 & 6 & -7
\end{array}\right)
$$

Hence compute A^{-1} the inverse of the matrix
(6 marks)
b. I) Find the determinant of the following matrix

$$
\left(\begin{array}{ccc}
-4 & 9 & 2 \\
5 & 6 & -1 \\
3 & 2 & 7
\end{array}\right)
$$

(3 marks)
ii) For the system of equations given below, form the augmented matrix hence solve for the three unknowns

$$
\begin{gathered}
2 x+4 y+7 z=82 \\
6 x-3 y+z=11 \\
x+2 y-5 z=-27
\end{gathered}
$$

$$
\text { using Gaussian elimination method } \quad 6 x-3 y+z=11
$$

c. Compute the integral $I=\sqrt{\frac{2}{\pi}} \times \int_{0}^{1} e^{\frac{-x^{2}}{2}} d x$ using Simpson's $\frac{\mathbf{1}}{\mathbf{3}}$ rd rule taking $\mathrm{h}=0.125$

QUESTION FOUR (20 MARKS)

a. Using Crout's reduction, decompose the matrix A

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
3 & 5 & 4 \\
3 & 1 & 3
\end{array}\right)
$$

In to $[L][U]$ form and hence solve the system of equations

$$
\begin{align*}
& x+y+z=7 \\
& 3 x+5 y+4 z=24 \\
& 3 x+y+3 z=16 \tag{7marks}
\end{align*}
$$

b. Use Gauss Legendre quadrature formula to compute the integral

$$
I=\int_{5}^{12} \frac{d x}{x} \quad \text { for } \mathrm{n}=3 \text { in the interval }(-1,1)
$$

c. Given that $A=\left(\begin{array}{cc}1+j & 2 j \\ -3 j & 1-4 j\end{array}\right)$ and that $j^{2}=-1=j . j$. Determine $\operatorname{det} \mathrm{A}$
d. If $\mathrm{A}(\mathrm{t})=\left(\begin{array}{ccc}e^{t} & 2 e^{-t} & e^{2 t} \\ 2 e^{t} & e^{-t} & -e^{2 t} \\ e^{t} & 3 e^{-t} & 2 e^{t}\end{array}\right)$
i) Find $\frac{d A}{d t}$
ii) Determine $\int_{0}^{1} A(t) d t$

QUESTION FIVE (20 MARKS)

a. Employ Taylors method to obtain an approximate value of y at $\mathrm{x}=0.2$ for the differential equation given below and compare the results with the exact solution $\frac{d y}{d x}=2 y+3 e^{x}, y(0)=0 \quad$ (5 marks)
b. Given $\frac{d y}{d x}=1+y^{2}$ approximate $y(0.8)$ using the Milne's Predictor Corrector method if

x	0.0	0.2	0.4	0.6
y	0	0.2027	0.4228	0.6841

(7 marks)
c. Consider the following system of linear equations. $2 x-3 y+4 z=33$

$$
3 x-2 y-2 z=2
$$

Apply Crammer's rule to determine x, y and z
d. Given that $A=\left(\begin{array}{cc}3 & 2-i \\ 4+3 i & -5+2 i\end{array}\right)$

Find the ad joint of A

