

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology
Department of Mechanical & Automotive Engineering
UNIVERSITY EXAMINATION FOR:
BSc. Mechanical Engineering
EMG 2411: Solids & Structural Mechanics IV
SUPPLIMENTARY EXAMINATION

SERIES: September 2018 TIME: 2 HOURS

Instruction to Candidates:

You should have the following for this examination

- Answer booklet
- Non-Programmable scientific calculator

This paper consists of **FOUR** questions. Attempt any **THREE** questions.

Maximum marks for each part of a question are as shown.

Do not write on the question paper.

Ouestion ONE

Fig Q1 shows a beam of length l, fixed at both ends and supporting a distributed load of magnitude w N/m over a length $\frac{l}{2}$ and a point load P applied at a distance $\frac{l}{4}$ from the right-hand end.

- (i) Calculate the reactions at the supports in terms of the indicated parameters
- (ii) Show that the deflection at the centre of the beam is given by

$$\delta = -\frac{1}{EI} \left[\frac{wl^4}{768} + \frac{Pl^3}{384} \right]$$

Question TWO

Fig Q2 shows the cross-section of a steel beam, made from a plate of thickness t. If at a particular section along the length of this beam, a Shear Force V acts, locate the position of the Shear Centre.

Question THREE

Fig Q3 shows the cross-section of a two-celled tube with the thicknesses given as functions of t and the remaining dimensions given as functions of a. The tube has a length L and it is loaded by a twisting moment T. Taking the Modulus of Rigidity to be G, determine

- (a) the Shear Stresses in all the walls
- (b) the Angle of Twist per unit length

Question FOUR

A strut of length l is pin-jointed at the ends and it supports a compressive load P at the ends as well as a transverse load W applied at the centre.

- (i) Derive an expression for the maximum deflection
- (ii) If P = 140kN, the diameter of the strut d = 40mm, and the limiting stress in tension or compression is $260MN/m^2$, calculate the acceptable value of W.

Ouestion FIVE

A circular plate of radius R and thickness t is fixed at the periphery and it supports a uniformly distributed pressure p /unit area on one surface.

- (i) Show that the maximum deflection is given by $w = \frac{pR^4}{64D}$ and it occurs at the centre
- (ii) Calculate the ratio $\frac{w_{\text{max}}Plate}{w_{\text{max}}Beam}$

where $w_{\rm max}Plate$ is the maximum deflection of the plate and $w_{\rm max}Beam$ is the maximum deflection of a beam of unit breadth and thickness t and length 2R, simply supported at the ends and supporting a uniformly distributed load p/unit length.

Assume that for the plate, at any radius r, the Bending Moment in the radial direction per unit length of arc is given by:

$$M_r = -D \left[\frac{d^2 w}{dr^2} + \frac{v}{r} \frac{dw}{dr} \right]$$

and the Bending Moment in the Circumferential direction per unit length of radius is given by :

$$M_{\theta} = -D \left[\frac{1}{r} \frac{dw}{dr} + \upsilon \frac{d^2 w}{dr^2} \right]$$

Also

$$\frac{d}{dr} \left[\frac{1}{r} \frac{d}{dr} \left(r \frac{dw}{dr} \right) \right] = \frac{Q}{D}$$

Where Q is the Shear Force per unit length and

$$D = \frac{Et^3}{12(1-v^2)}$$

