TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology
Department of Mechanical \& Automotive Engineering UNIVERSITY EXAMINATION FOR:
\section*{BSc. Mechanical Engineering}
\section*{EMG 2411: Solids \& Structural Mechanics IV}
SUPPLIMENTARY EXAMINATION
SERIES: September 2018
TIME: 2 HOURS

Instruction to Candidates:

You should have the following for this examination

- Answer booklet
- Non-Programmable scientific calculator

This paper consists of FOUR questions. Attempt any THREE questions.
Maximum marks for each part of a question are as shown.

Do not write on the question paper.

Question ONE

Fig Q1 shows a beam of length l, fixed at both ends and supporting a distributed load of magnitude $w \mathrm{~N} / \mathrm{m}$ over a length $l / 2$ and a point load P applied at a distance $l / 4$ from the right-hand end.
(i) Calculate the reactions at the supports in terms of the indicated parameters
(ii) Show that the deflection at the centre of the beam is given by

$$
\delta=-\frac{1}{E I}\left[\frac{w l^{4}}{768}+\frac{P l^{3}}{384}\right]
$$

Question TWO

Fig Q2 shows the cross-section of a steel beam, made from a plate of thickness t. If at a particular section along the length of this beam, a Shear Force V acts, locate the position of the Shear Centre.

Question THREE

Fig Q3 shows the cross-section of a two-celled tube with the thicknesses given as functions of t and the remaining dimensions given as functions of a. The tube has a length L and it is loaded by a twisting moment T. Taking the Modulus of Rigidity to be G, determine
(a) the Shear Stresses in all the walls
(b) the Angle of Twist per unit length

Question FOUR

A strut of length l is pin-jointed at the ends and it supports a compressive load P at the ends as well as a transverse load W applied at the centre.
(i) Derive an expression for the maximum deflection
(ii) If $P=140 \mathrm{kN}$, the diameter of the strut $d=40 \mathrm{~mm}$, and the limiting stress in tension or compression is $260 \mathrm{MN} / \mathrm{m}^{2}$, calculate the acceptable value of W.

Question FIVE

A circular plate of radius R and thickness t is fixed at the periphery and it supports a uniformly distributed pressure $p /$ unit area on one surface.
(i) Show that the maximum deflection is given by $w=\frac{p R^{4}}{64 D}$ and it occurs at the centre
(ii) Calculate the ratio $\frac{w_{\max } \text { Plate }}{w_{\max } \text { Beam }}$
where $w_{\max }$ Plate is the maximum deflection of the plate and $w_{\max }$ Beam is the maximum deflection of a beam of unit breadth and thickness t and length $2 R$, simply supported at the ends and supporting a uniformly distributed load p /unit length.
Assume that for the plate, at any radius r, the Bending Moment in the radial direction per unit length of arc is given by:

$$
M_{r}=-D\left[\frac{d^{2} w}{d r^{2}}+\frac{v}{r} \frac{d w}{d r}\right]
$$

and the Bending Moment in the Circumferential direction per unit length of radius is given by :

$$
M_{\theta}=-D\left[\frac{1}{r} \frac{d w}{d r}+v \frac{d^{2} w}{d r^{2}}\right]
$$

Also

$$
\frac{d}{d r}\left[\frac{1}{r} \frac{d}{d r}\left(r \frac{d w}{d r}\right)\right]=\frac{Q}{D}
$$

Where Q is the Shear Force per unit length and

$$
D=\frac{E t^{3}}{12\left(1-v^{2}\right)}
$$

