TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology
 Department of Mechanical \& Automotive Engineering
 UNIVERSITY EXAMINATION FOR:
 BSc. Mechanical Engineering
 EMG 2404 : MECHANICS OF MACHINES III
 SPECIAL/SUPPLEMENTARY EXAMINATIONS
 SERIES: SEPTEMBER 2018
 TIME: 2 HOURS
 DATE: Pick Date Sep 2018

Instruction to Candidates:

You should have the following for this examination

- Answer booklet
- Non-Programmable scientific calculator

This paper consists of FIVE questions. Attempt any THREE questions.
Maximum marks for each part of a question are as shown.

Do not write on the question paper.

QUESTION ONE

Fig. Q1, shows a link mechanism, driven by crank OA, as shown. The link dimensions are as indicated. For the configuration given and with crank angular velocity 20 RPM, determine:
a) Velocity of sliding of B and D
b) Angular velocity of C D
c) Linear acceleration of D
d) Angular acceleration of CD (20 marks)

QUESTION TWO

If a Hooke's joint connects two shafts whose axes are inclined to each other by an acute angle ψ, show that the instantaneous speed ratio between these shafts is given by the expression :
$\operatorname{Sec}^{2} \varnothing /\left(\sec ^{2} \xi \cdot \cos \psi\right)$ where \varnothing and ξ are the angles through which the two halves of the joint have turned respectively from a datum. Determine the maximum and minimum values of this ratio when $\psi=16.5^{\circ}$.[Derive any formulae used]. (20 marks)

QUESTION THREE

In the mechanism shown in Figure Q3, the crank OA rotates anticlockwise at 240 RPM and moves the sliding blocks C and D , as shown. $\mathrm{OA}=0.2 \mathrm{~m}, \mathrm{AB}=0.5 \mathrm{~m}, \mathrm{AC}=0.75 \mathrm{~m}, \mathrm{BD}=1.25 \mathrm{~m}$. For the position shown, find the accelerations of C and D. (20 marks)

-

QUESTION FOUR

The output torque of a multi cylinder engine in Nm is given by
$T(N m)=400+240 \sin 3 \Theta$, where Θ is the angle turned by the crank. Sketch the corresponding curve and determine the variation in the kinetic energy of the flywheel. If the mean speed is 1200 RPM, the total
speed variation $20 \mathrm{rev} / \mathrm{min}$ and the radius of gyration of the flywheel 200 mm , find its mass. Calculate also the power developed by the engine. (20 marks)

QUESTION FIVE

A straight sided cam has both sides tangential to the base circle which is 25 mm radius and the total angle of action is 120°. A lift of 10 mm is given to a roller 20 mm diameter, the centre of which moves along a straight line passing through the axis of cam. The camshaft has a speed of $240 \mathrm{rev} / \mathrm{min}$. Determine:
a) The radius of the nose arc;
b) The speed of the roller centre when the roller is in contact with the cam at the end of one of the straight flanks adjacent to the nose;
c) The greatest acceleration of the roller centre (20 marks)

