TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY
 DEPARTMENT OF MEDICAL ENGINEERING
 UNIVERSITY EXAMINATION FOR:
 THE DEGREE IN BACHELOR OF IN MEDICAL ENGINEERING

EME 4353 : Fluid Mechanics II
SPECIAL/SUPPLEMENTARY EXAMINATION
SERIES: SEPTEMBER 2018
TIME: 2 HOURS
DATE: Pick Date Sep 2018

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of Choose No questions. Attempt Choose instruction.
Do not write on the question paper.

Question ONE
a) Define the following terms
i. Vortex flow
ii. Force vortex flow.
iii. Free vortex flow.
(6 marks)
b) Derive the equation for the depth of the parboloid formed by the surface of a liquid contained in a cylindrical tank which is rotated at a constant angular velocity \dot{m} about its vertical axis. (6 marks)
c) A cylindrical vessel 12 cm in diameter and 30 cm deep is filled with water upto the top. The vessel is open at the top. Find the quantity of liquid left in the vessel, when it is rotated about its vertical axis with a speed of
i. $\quad 3000$ r.p.m
ii. 600 r.p.m
a) Define the functions
i. Velocity potential function
ii. Stream function.
b) The velocity potential function for a two dimensional flow is

$$
\emptyset=x(2 y-1)
$$

At a point $P(4,5)$ Determine
i. The velocity
ii. The Value of the stream function.
(7 marks)
c) The stream function for a two dimensional flow is given by $\psi=2 x y$. Calculate velocity function at point $\mathrm{P}(2,3)$. Find the velocity potential function ϕ

Question THREE
a) Describe compressible.flow.
b) Define the following terms
i. Subsonic flow
ii. Sonic flow
iii. Supersonic flow
iv. Mach cone
c) Calculate the Mach number at a point on a jet propelled aircraft, which is flying at $1100 \mathrm{~km} / \mathrm{hour}$ at sea level where air temperature is 20 oC . Take $\mathrm{k}=1.4$ and $\mathrm{R}=287 \mathrm{j} / \mathrm{kg} \mathrm{K}$.
d) A gas is flowing through a horizontal pipe at a temperature of $4{ }^{\circ} \mathrm{c}$. The diameter of the pipe is 8 cm and at a section $1-1$ in the pipe, the pressure is $30.0 \mathrm{~N} / \mathrm{cm}^{2}$ (gauge). The diameter of the pipe changes from 8 cm to 4 cm at the section 2-2, where the pressure is $20.3 \mathrm{~N} / \mathrm{cm}^{2}$ (gauge). Find the velocities of the gas at these sections assuming an isothermal process. Take $\mathrm{R}=287 \mathrm{Nm} / \mathrm{kg} \mathrm{K}$, and atmospheric pressure $10=10 \mathrm{~N} / \mathrm{cm}^{2}$

Question FOUR

a) Define the following Terms
i. Boundary layer Thickness
ii. Displacement Thickness
iii. Momentum Thickness
iv. Energy Thickness
b) The velocity distribution in the boundary layer is given by

$$
\frac{u}{U}=2\left(\frac{y}{\delta}\right)-\left(\frac{y}{\delta}\right)^{2}
$$

δ being boundary layer thickness
Calculate the following
i. Displacement.
ii. Momentum thickness

Question FIVE
a) Describe the types of flow lines
i. Path line.
ii. Streamline
iii. Stream tube
iv. Streak line
b) In a fluid ,the velocity field is given by

$$
V=(3 x+2 y) i+\left(2 z+3 x^{2}\right) j+(2 t-3 z) k
$$

Calculate
i. The velocity components u, v, w ant any point in the flow field
ii. The speed at point $(1,1,1)$
iii. The speed at time $t=2 s$ at point $(0,0,2)$
(6marks)
c) For the velocity field given by

$$
\left.V=10 x y i+5 x^{2} j+t^{2} x+z\right) k
$$

Find the velocity and acceleration of a fluid particle at $(1,2,3)$ when $t=1$

