TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology
 Department of Medical Engineering
 UNIVERSITY EXAMINATION FOR:
 BSc. Medical Engineering
 Type unit code : Engineering Mechanic (Dynamics)
 SPECIAL/SUPPLEMENTARY EXAMINATION
 SERIES: SEPTEMBER 2018
 TIME: 2 HOURS
 DATE: Pick Date Sep 2018

Instruction to Candidates:

You should have the following for this examination

- Answer booklet
- Non-Programmable scientific calculator

This paper consists of FIVE questions. Attempt question ONE and any other TWO questions.
Maximum marks for each part of a question are as shown.
Do not write on the question paper.

Question ONE

a) A baseball is thrown downward from a tower of height h with an initial speed v_{o}. Determine the speed at which it hits the ground and the time of travel.
Given:

$$
\mathrm{h}=50 \mathrm{ft} \quad \mathrm{~g}=32.2 \mathrm{ft} / \mathrm{s}^{2} \quad \mathrm{v}_{\mathrm{o}}=18 \mathrm{ft} / \mathrm{s}
$$

b) The acceleration of a particle along a straight line is define by $a_{p}=b t+c$. At $t=0$ $s_{p}=s_{p o}$ and $v_{p}=v_{p o}$. When $t=t_{1}$ Determine
(1) the particle's position
(2) the total distance travelled and
(3) the velocity

Given ;
$b=2 \mathrm{~m} / \mathrm{s}^{3}, \quad c=-9 \mathrm{~m} / \mathrm{s}^{2}, S_{p o}=1 \mathrm{~m}, \quad v_{p o}=10 \mathrm{~m} / \mathrm{s}, \quad t_{1}=9 \mathrm{~s}$

A car travels along the curve having a radius of R if its speed is uniformly increased from v_{1} to v_{2} in time t determine the magnitude of its acceleration at the instant ots speed is V_{3}.

Given:
$v 1=15 \mathrm{~m} / \mathrm{s}, \quad t=3 \mathrm{~s}, \quad v 2=27 \mathrm{~m} / \mathrm{s}, \quad v 3=20 \mathrm{~m} / \mathrm{s}, \quad$ and $R=300 \mathrm{~m}$

Question TWO

a) A small projectile is fire vertically downwards through a fluid medium with an initial velocity of $60 \mathrm{~m} / \mathrm{s}$. Due to the resistance of the fluid the projectile experience a deceleration equal to $a=(-\mathbf{0 . 4 v}) \mathrm{m} / \mathrm{s}^{2}$, where v is in m / s. Determine the projectile's velocity and position $4 s$ after it is fire
b) During a test a rocket is travelling upwards at a speed of $75 \mathrm{~m} / \mathrm{s}$, and when it is 40 m from the ground its engine fails. Determine the maximum high s_{B} reached by the rocket and the speed before it hits the ground. While in motion the rocket is subjected to a constant downwards acceleration of $9.81 \mathrm{~m} / \mathrm{s}^{2}$ due to gravity. Neglect the effect of air resistance.

Question THREE

a) A 100 kg block A shown in the figure below is release from rest. If the masses of the pulleys and the cord are neglected, determine the speed of the 20 kg block \boldsymbol{B} in $2 s$

(10 marks)
b) A projectile is fire vertically upwards from the ground, with an initial velocity of $50 \mathrm{~m} / \mathrm{s}$. Determine the maximum height to which it will travel if
(1) atmospheric resistance is neglected
(2) atmospheric resistance is measured as $\mathrm{F}_{\mathrm{D}}=\left(0.001 \mathrm{v}^{2}\right) \mathrm{N}$, where v is the speed at any instant, measured in m / s
(10 marks)

Question FOUR

a) The block on the figure bellow rest on a smooth incline. If the spring is originally stretched $0.5 m$, determine the total work done by all the forces acting on the block, when a Horizontal force $P=400 \mathrm{~N}$ pushes the block up the plane $s=2.0 \mathrm{~m}$

(10 marks)
b) A $3500-\mathrm{lb}$ car on the figure bellow is travelling down the 10° incline at a speed $20 \mathrm{ft} / \mathrm{s}$. if the driver jam on the brakes, causing his wheel to lock, determine how
far sthe tires skid on the road. The coefficient of kinetic friction between the wheel and the road is $\mu_{\mathrm{k}}=0.5$

Question FIVE

a) For a short time a crane lifts a 2.50 Mg beam with a force $\boldsymbol{F}=(28+3 \mathrm{~s} 2) \boldsymbol{k N}$. Determine the speed of the beam when it has risen $\boldsymbol{s}=\mathbf{3 m}$. Also how much time does it take to attain this height starting from rest?
b) The power screw start from rest and is given a rotational speed $\boldsymbol{\theta}$ which increases uniformly with time t according to $\dot{\boldsymbol{\theta}}=\boldsymbol{k t}$, where \boldsymbol{k} is a constant. Determine the expressions for velocity \boldsymbol{v} and acceleration \boldsymbol{a} of the center of the ball \boldsymbol{A} when the screw has turned through one complete revolution from the rest. The lead of the screw (advancement per revolution) is \boldsymbol{L}.

