TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology
Department of Mechanical \& Automotive Engineering UNIVERSITY EXAMINATION FOR:
Diploma of Technology in Electrical \& Electronics Engineering
EME 2131: Engineering Drawing \& Design I
END OF SEMESTER EXAMINATION
SERIES: AUGUST 2019
TIME: 3 HOURS
DATE: Pick Date Aug 2019

Instruction to Candidates:

You should have the following for this examination

- Student I.D. Card \& Examination Pass
- A2 size Drawing paper
- Non-Programmable scientific calculator

This paper consists of FIVE questions. Attempt question ONE and any other TWO questions.
Maximum marks for each part of a question are as shown.
Do not write on the question paper.

Question ONE (Compulsory)

Figure 1 shows a Mechanical block drawn in pictorial view. Draw the block in first angle orthographic projection the following views;
a) Front elevation viewed from the left hand side.
b) End elevation viewed from the right hand side.
c) Plan viewed from the top.

Dimension your drawing correctly and show the symbol of projection.

Figure 1

Question TWO

Figure 2 shows three views of a mechanical block drawn in first angle orthographic projection. From the views, construct an oblique view.
(20 marks)

First angle projection

Dimensions in mm

Figure 2

Question THREE

a) Construct a diagonal scale 40 mm to represent $1 \mathrm{~mm}, 4 \mathrm{~m}$ long and to read to 10 mm . Show the following readings on the scale:
i. 1 m 130 mm
ii. 2 m 940 mm
iii. 3 m 690 mm
(10 marks)
b) Figure 3 shows two views of a mechanical block drawn in first angle orthographic projection. From the views, construct an Isometric view of the block.

Figure 3

Question FOUR

A small scoop is to be made from sheet metal to the dimensions given in Figure 4. Draw
a) The face of the cylinder viewed from the top in the position shown.
b) The development of the shape of the sheet metal required to make the body of the scoop with the joint along AB .

Figure 4

Question FIVE

a) Construct an ellipse given major axis 125 mm and minor axis 75 mm .
(10 marks)
b) Figure 5 shows a slotted link $A B$ which rotates in clockwise direction as a round ball at Q rolls in the slot towards B. If the link makes two complete revolutions as the ball rolls from Q to B, plot the path traced by the ball. Name the path traced and state the application of such paths in engineering.

Figure 5

