

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology Department of Electrical & Electronics Engineering UNIVERSITY EXAMINATION FOR: Diploma in Technology in Electrical and Electronics Engineering (DTEEE) EME 2130: Mechanical Engineering Science SPECIAL/ SUPPLEMENTARY EXAMINATION SERIES: AUGUST 2019 TIME: 2 HOURS DATE: Pick Date Aug 2019

Instruction to Candidates:

You should have the following for this examination

- Student I.D. Card & Examination Pass
- Answer booklet
- Non-programmable Scientific Calculator

This paper consists of **FIVE** questions. Attempt question **ONE** (Compulsory), and any other **TWO** question from section.

Maximum marks for each part of a question are as shown.

Do not write on the question paper.

Question ONE (Compulsory)

- a) Sketch a graph of stress versus strain for a ductile material and identify any four important points on that curve (5 marks)
- b) A vector A has a magnitude of 50.0 m and points in a direction 20.0° below the positive *x*-axis. A second vector B, has a magnitude of 70.0 m and points in a direction 50.0° above the positive *x*-axis. Draw the vectors A, B, and C=A+B on a Cartesian plane and determine the magnitude and direction of vector C. (5 marks)
- c) A wheel of diameter 540 mm is rotating at (1500/π) rev/min. Calculate the angular velocity of the wheel and the linear velocity of a point on the rim of the wheel.
 (4 marks)
- d) i) Differentiate between work and power.

ii) Determine the power required to lift a load through a height of 20 m in 12.5 s if the force required is 2.5 kN.

(6 marks)

Question TWO

a)	Differentiate between Energy, heat and power.	(3 marks)
----	---	-----------

- b) State the law of conservation of mechanical energy. (2 marks)
- c) The resistance to a cutting tool varies during the cutting stroke of 800 mm as follows:_First, the resistance increases uniformly from an initial 5000 N to 10000 N as the tool moves 500 mm, and second, the resistance falls uniformly from 10000 N to 6000 N as the tool moves 300 mm. Draw, to scale, the work diagram and calculate the work done in one cutting stroke. (10 marks)
- d) Determine the output energy of an electric motor which is 60% efficient if it uses 2 kJ of electrical energy. (5 marks)

Question THREE

- a) Differentiate between destructive and non-destructive material testing methods (2 marks)
- b) Below is a data obtained during a tensile test on a mild steel specimen:

Diameter of specimen = 12.0 mm; Diameter at fracture = 9.2 mm. Maximum load carried = 40 kN Gauge length = 76 mm; Gauge length at fracture =95 mm Load at fracture = 29 kN

Load	2.47	4.97	7.40	9.86	12.33	14.80	17.27	19.74	22.20	24.7	27.13	29.60	31.10	33.30
(kN)														
Extension	5.6	11.9	18.2	24.5	31.5	38.5	45.5	52.5	59.5	66.5	73.5	81.2	89.6	112
(m ×10-6)														

i) Plot a load/extension graph using the data tabulated above. (4 marks)

Using the graph and the other information supplied, determine the values of:

- (ii) Young's modulus of elasticity;(4 marks)iii) The ultimate tensile stress;(2 marks)iv) The percentage reduction of area;(3 marks)
- iv) The percentage reduction of area;(3 marks)v) The percentage elongation;(2 marks)
- vi) The actual stress at fracture. (3 marks)

Question FOUR

- a) Define the following terms
 - i) Mass
 - ii) Length
 - iii) Particle
- b) State the Newton's Laws of motion
- c) Two forces F₁ and F₂ act on a hook as shown in Fig Q1. The force F₁ makes angles 45°, 60°, and 120° with x-, y-, and z- axes respectively. Determine the magnitude of F₂ and its coordinate direction angles, given that the resultant force **R** acts along the positive *y*-axis and has magnitude of 1200 N. (14 marks)

Question FIVE

- a) An object is suspended by a thread 200 mm long and both object and thread move in a horizontal circle with a constant angular velocity of 2.5 rad/s. If the tension in the thread is 12 N, determine the mass of the object. (4 marks)
- b) A ball of mass 50 g is moving with a velocity of 4 m/s when it strikes a stationary ball of mass 25 g. The velocity of the 50 g ball after impact is 2.5 m/s in the same direction as before impact. Determine the velocity of the 25 g ball after impact. (7 marks)
- c) i) The speed of a shaft increases uniformly from 300 revolutions per minute to 800 revolutions per minute in 10s. Find the angular acceleration of the shaft (5 marks)
 - ii) If the diameter of the shaft in problem c (i) above is 50 mm, determine the linear acceleration of the shaft on its external surface, correct to 3 significant figures. (4 marks)

©Technical University of Mombasa

(3 marks)

(3 marks)