

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology Department of Electrical & Electronics Engineering UNIVERSITY EXAMINATION FOR: Diploma in Technology in Electrical and Electronics Engineering (DTEEE) EME 2130: Mechanical Engineering Science END OF SEMESTER EXAMINATION SERIES: AUGUST 2019 TIME: 2 HOURS DATE: Pick Date Aug 2019

Instruction to Candidates:

You should have the following for this examination

- Student I.D. Card & Examination Pass
- Answer booklet
- Non-programmable Scientific Calculator

This paper consists of **FIVE** questions. Attempt question **ONE** (**Compulsory**), and any other **TWO** question from section.

Maximum marks for each part of a question are as shown.

Do not write on the question paper.

Question ONE (Compulsory)

a)	i)	State Hooke's Law	(1 mark)

- A force of 10 kN applied to a component produces an extension of 0.1 mm. Determine the force needed to produce an extension of 0.12 mm. (2 marks)
- b) A car towing another at 54 km/h exerts a steady pull of 800 N. Determine the work done in 0.5 hours. (3 marks)
- c) A vehicle of mass 900 kg travels round a bend of radius 180 m, at 48.4 km/h. Determine the centripetal force acting on the vehicle. (3 marks)
- d) Calculate the force needed to accelerate a boat of mass 22 tonne uniformly from rest to a speed of 24.6 km/h in 12 minutes. (6 marks)
- e) The link in **Fig Q1 (e)** is subjected to two forces F_1 and F_2 . Determine the magnitude of the resultant force. (5 marks)

Fig Q1 (e)

Question TWO

- a) A car is travelling at 64.8 km/h and has wheels of diameter 600 mm.
 - i) Find the angular velocity of the wheels in both rad/s and rev/min.
 - ii) If the speed remains constant for 1.44 km, determine the number of revolutions made by a wheel, assuming no slipping occurs.

(7 marks)

b) Three balls, *A*, *B*, and C lie in a straight line. *A* has a mass of 6 kg and is moving towards *B* at 10 m/s. *B* has a mass of 10 kg and a velocity of 7 m/s, and is moving towards *C*. Ball *C* is moving at 2 m/s. *A* collides with *B*, and *A* and *B* then collide with *C*. Determine the mass of ball *C* assuming all three balls have a common velocity of 3 m/s after the collision of *A* and *B* with C. (13 marks)

Question THREE

- a) Define the following terms
 - i) Scalar quantity
 - ii) Length
 - iii) Mass
- b) State the Newton's Laws of motion
- c) Forces *F*₁, *F*₂, and *F*₃ are acting at point A of the bracket as shown in Fig Q3 (c) Using the components method, determine the magnitude and direction of the resultant *R*. (14 marks)

(3 marks)

(3 marks)

Question FOUR

a)	Differentiate between work and energy.	(2 marks)	۱
u)	Differentiate between work and chergy.	$\simeq marks$,

b) State the law of conservation of energy. (2 marks)

- c) The potential energy of a mass is increased by 20.0 kJ when it is lifted vertically through a height of 25.0 m. It is now released and allowed to fall freely. Neglecting air resistance, find its kinetic energy and its velocity after it has fallen 10.0 m.(8 marks)
- d) A load is hoisted 42 m and requires a force of 100 N. The efficiency of the hoist gear is 60% and that of the motor is 70%. Determine the input energy to the hoist.

Question FIVE

- a) Differentiate between shear and tensile strains using diagrams (3 marks)
- b) A zinc specimen of circular cross-section is subjected to a tensile test and the data from the test is shown below:

Diameter of specimen = 12 mm; Extension at fracture = 5 mm; Gauge length = 135 mm; Final Diameter = 8 mm

Load	10	15	20	25	30	35	40	37	34	32
(kN)										
Extension	0.15	0.25	0.35	0.45	0.80	1.15	1.90	2.80	3.50	4.60
(m ×10-6)										

i) Plot a load/extension graph using the data tabulated above. (3 marks)

Using the graph and the other information supplied, determine the values of:

(ii)	The stress at limit of proportionality	(3 marks)
(ii)	Young's modulus of elasticity;	(4 marks)
(iv)	The ultimate tensile stress;	(2 marks)
iv)	The percentage elongation;	(2 marks)
v)	The stress at a strain of 0.01	(3 marks)