TECHNICAL UNIVERSITY OF MOMBASA

$\mathscr{J}_{\text {acully }}$ of Engineering \mathcal{E} Jechnology
DEPARTMENT OF BUILDING \&CIVIL ENGINEERING
\section*{DIPLOMA IN BUILDING \& CIVIL ENGINEERING}
EME 2105: ENGINEERING DRAWING AND DESIGN

Series: August 2019
Time allowed: 2 hours

Instructions to Candidates

You should have the following for this examination:

- Answer booklet
- A set of drawing instruments
- Cartridge drawing paper size A 2

This paper consists of FIVE questions. Answer any THREE of the FIVE questions.
All questions carry equal marks.
Maximum marks for each part of a question are as shown
This paper consists of FOUR printed pages

Question 1

Fig 1 shows the three views of a bearing block in FIRST ANGLE ORTHOGRAPHIC
PROJECTION. Using a scale of $1: 1$, draw a cabinet oblique drawing of the block with ' x 'as the lowest point.

Fig 1

Question 2

(a) Construct an ellipse by the intersecting arcs method given the major and minor axes as 102 and 68 mm respectively.
(10 Marks)
(b) Draw an involute to a hexagon 42 mm diameter.

Question 3

(a) Construct a helix given the pitch and generating circle diameter as 56 and 25 mm respectively.
(10 Marks)
(b) Draw a cycloid to a point on the circumference of a circle 25 mm diameter which rolls without slip on a straight line for a complete revolution.
(10 Marks)

Question 4

Fig 2 shows the in-complete plan and elevation of a right truncated square pyramid in 'FIRST ANGLE'. Draw the following views of the pyramid:
a) The given front view
b) A complete plan
c) A side view showing the cut surface
d) Surface development of the slanting faces

Fig 2

Question 5

Shown in fig 3 is a pictorial drawing of a support bracket. Draw, in full size scale, the following for the bracket in FIRST ANGLE ORTHOGRAPHIC PROJECTION.
(a) Front elevation ' A '
(b) A side elevation ' B '
(c) Plan ' C '
(5 Marks)
(7 Marks)

Fig 3

