TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology
Department of Mechanical \& Automotive Engineering
UNIVERSITY EXAMINATION FOR:
Diploma in Mechanical Engineering
EME 2105: Engineering Drawing \& Design I
END OF SEMESTER EXAMINATION
SERIES: AUGUST 2019
TIME: 3 HOURS
DATE: Pick Date Aug 2019

Instruction to Candidates:

You should have the following for this examination

- Student I.D. Card \& Examination Pass
- A2 size Drawing paper E Drawing Instruments
- Non-Programmable scientific calculator

This paper consists of FIVE questions. Attempt question ONE and any other TWO questions.
Maximum marks for each part of a question are as shown.
Do not write on the question paper.

Question ONE (Compulsory)

Figure 1 shows a mechanical block drawn in pictorial. Draw the block to SIZE in first angle orthographic projection the following views:
a) Front elevation viewed from the right hand side.
b) End elevation viewed from the left hand side.
c) Plan viewed from the top.

Figure 1

Question TWO

Figure 2 shows two views of a VEE BLOCK drawn in first angle orthographic projection. From the views, construct an Isometric view of the block.

Figure 2

Question THREE

a) Construct a diagonal scale 50 mm to represent $1 \mathrm{~mm}, 3 \mathrm{~m}$ long and to read to 10 mm . Show the following readings on the scale:
i. $\quad 1 \mathrm{~m} 140 \mathrm{~mm}$
ii. 2 m 450 mm
iii. 3 m 970 mm
(10 marks)
b) Figure 3 shows three views of a mechanical block drawn in first angle orthographic projection. From the views, construct an Oblique view of the block.
(10 marks)

Figure 3

Question FOUR

Front view of a sheet metal scoop is shown in Figure 4. Copy the given view and Draw;
a) The end elevation viewed from the left hand side.
b) The development of the shape of the sheet metal required to make the body of the scoop with the joint along AB .

Figure 4

Question FIVE

a) Construct an ellipse in a rectangle measuring 120 mm by 70 mm .
(10 marks)
b) Figure 5 shows a slotted link AB which rotates in clockwise direction as a round ball at Q rolls in the slot towards B. If the link makes one and a half revolutions as the ball rolls from Q to B, plot the path traced by the ball. Name the path traced and state the application of such paths in engineering.

Figure 5

