TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology
Department of Mechanical \& Automotive Engineering
UNIVERSITY EXAMINATION FOR:
Diploma in Mechanical Engineering
EME 2102: Mechanical Engineering Science I
SPECIAL/ SUPPLEMENTARY EXAMINATION
SERIES: AUGUST 2019
TIME: 2 HOURS
DATE: Pick Date Aug 2019

Instruction to Candidates:

You should have the following for this examination

- Student I.D. Card \& Examination Pass
- Answer booklet
- Non-Programmable scientific calculator

This paper consists of FIVE questions. Attempt question ONE and any other TWO questions.
Maximum marks for each part of a question are as shown.
Do not write on the question paper.

Question ONE (Compulsory)

a) Define the following terms as applied in Engineering science;
i. Equilibrant
ii. Concurrent forces
iii. Resultant
iv. Coplanar forces
(6 marks)
b) Explain briefly the assumptions made when solving problems in frameworks.
(4 marks)
c) A truss of span 10 m is loaded as shown in Figure 1. Determine the reactions, forces in the members and state each member's senses.

Figure 1

Question TWO

a) A tennis player serves a ball with a speed of $30 \mathrm{~m} / \mathrm{s}$. The ball leaves the racquet from a height of 2.5 m and a horizontal distance of 13.5 m from the net. The height of the net is 1.2 m .
i. If the ball leaves the racquet horizontally, determine whether the ball will clear the net.
ii. If the ball leaves the racquet at an angle of 10° below the horizontal, determine whether the ball will clear the net.
iii. What is the minimum angle at which the ball must leave the racquet for it to clear the net?
(10 marks)
b) Figure 2 shows a system of coplanar forces. Determine the magnitude and direction of the resultant force.
(10 marks)

Figure 2

Question THREE

a) An air rifle that shoots pellets with a speed of $100 \mathrm{~m} / \mathrm{s}$ is to be aimed at an apple placed 100 m away. The centre of the apple is at the same height as the muzzle.
i. At what angle above the horizontal must the rifle be pointed so that the pellet hits the apple dead center?
ii. How high above the centre of the apple should the rifle be aimed?
iii. What is the maximum vertical displacement of the pellet when it follows the required trajectory?
iv. What is the velocity of the pellet 0.25 sec before it hits the target?
(10 marks)
b) A flywheel 1.2 m in diameter is uniformly accelerated from rest and revolves completely sixty times in reaching a speed of 120 revolutions per minute. Determine:
i. The time taken
ii. The angular acceleration
iii. The linear acceleration of a point on the rim.
(10 marks)

Question FOUR

a) The engine mechanism shown in Figure 3 has a crank 200 mm and connecting rod 500 mm long. If the crank speed is 50 revolutions per second clockwise, determine for the position shown:
i. The piston velocity
ii. The angular velocity of the connecting rod
iii. The velocity of a point C on the rod 200 mm from the crankpin.
(12 marks)

Figure 3
b) Two trains pass each other on parallel tracks. The first train is 180 m long and travels at $60 \mathrm{~km} / \mathrm{h}$, the second is 120 m long and travels at $40 \mathrm{~km} / \mathrm{h}$. Calculate the total time taken to pass each other completely:
i. If travelling in the same direction
ii. If travelling in opposite directions.

Question FIVE

A beam carries a dead load of 200 kg and is subject to a vertical force of 2 kN and to an inclined force of 1 kN acting at the points shown in Figure 4. The beam is encastre, i.e. built in to a wall, at each end and due to the fixing there are moments of $2 \mathrm{kN} \cdot \mathrm{m}$ and 1.6 $\mathrm{kN} \cdot \mathrm{m}$ acting in the directions shown. Determine the reactions R, L and H. (20 marks)

Figure 4

