TECHNICAL UNIVERSITY OF MOMBASA
faculty of engineering \& technology
department of electrical \& electronic engineering
UNIVERSITY EXAMINATION FOR:
DIPLOMA IN ELECTRICAL AND ELECTRONIC ENGINEERING

APS 2150: PHYSICAL SCIENCE

END OF SEMESTER EXAMINATION

SERIES: AUGUST 2019

TIME: 2 HOURS

DATE: Pick DateSelect MonthPick Year

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions.
Attempt Question any other THREE Questions
Do not write on the question paper.

QUESTION ONE

Define the following terms:
i) Binding energy
ii) Half - life
iii) Radioisotope
(3marks)
a) With the aid of a diagram, explain how a Geiger Muller tube operates as a radioactive detector
b) A parnt atom X of mass number 238, atomic number 92 undergoes two alpha decays followed by a beta decay to form an atom Y.
i) Write a balanced equation for this process.
ii) Determine the atomic number and mass number of Y .
iii) If the half-life of Y is 20 minutes, determine the fraction of the original mass of Y which would have decayed after 2 hours.
c) The activity of a sample of radioactive element against time is recorded in table 1 below.

Table 1

Activity (count per minute)	800	500	350	200	80	25
Time (minutes)	0	1.0	1.8	3.0	5.0	7.5

Plot the graph of activity against time. Hence determine the half - life of the element.

QUESTION TWO

a) Distinguish between the following terms giving an example of each:
i) Transverse wave
ii) Longitudinal waves.
b)
i) Sate any TWO conditions necessary for stationary waves to be formed
ii) With the aid of diagrams, illustrate three characteristics of stationary waves that distinguish them from progressive waves.
c)
i) Define the term electromagnetic spectrum
ii) Name any TWO electromagnetic waves with wavelengths shorter than that of visible light
iii) State the use of each wave/radiation named in c (ii) above.
d) Plane waves of wavelength 4 cm travelling at $30 \mathrm{cms}^{-1}$ asses from medium A to medium B at an angle of 40° to common boundary of the media. The velocity of medium B is $20 \mathrm{cms}^{-1}$. Determine
I) Frequency of the wave
II) The wavelength in medium B
III) The refractive index of medium B

QUESTION THREE

a) Define:
i) Latent heat
ii) Specific heat capacity
iii) Absolute zero temperature
b) Explain why water is preferred to oil as a coolant in motor vehicle radiators (2marks)
c) With the aid of a diagram, describe the electrical method to determine the specific heat capacity of a solid which is a good conductor of heat.
(8marks)
d) A 2 kW immersion heater is used to heat 500 g of ice initially at $-10^{\circ} \mathrm{C}$. Determine the time it would have to completely boil away the ice. Assume no losses in heat $\left(\mathrm{Cw}=4200 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}, \mathrm{Ci}=2100 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}, \mathrm{Lf}=3.4 \times 10^{5} \mathrm{Jkg}^{-1} \mathrm{Lv}=2.3 \times 10^{6} \mathrm{Jkg}^{-1}\right)$

QUESTION FOUR

a)
i) Define simple harmonic motion (S.H.M.)
(1mark)
ii) On the same axes, sketch a graph of displacement against time to represent:
I) Free oscillation
II) Underdamped oscillation
III) Critically damped oscillation
b) A bob of mass 0.5 kg swings in a vertical plane between points B and C as shown in fig. 1

i) Sketch the diagram and show:
I) Position of maximum kinetic energy
II) Position of minimum potential energy
III) The initial path of the bob if the string broke when it was in position A
(3marks)
ii) If the string broke when the bob was at A , determine:
I) How long it would reach the ground if the speed at A is $20 \mathrm{~m} / \mathrm{s}$
II) The horizontal distance covered
(6marks)
c) A bob of mass 20 g oscillates as a simple pendulum with amplitude 5 cm and period 2 seconds. Determine:
i) The maximum velocity of the bob
ii) The tension in the supporting thread when the velocity of the bob is maximum
(7marks)

QUESTION FIVE

a)
i) Define the terms:
I) Mole
II) Electrolyte
ii) Given Avogadro number $\mathrm{L}=6 \times 10^{23}$ atoms, calculate the number of atoms in 0.4 g of oxygen.
b) A substance contains 25.6% copper, 12.8% sulphur 26.5% oxygen and 36% water of crystallization. Determine its empirical formula. ($\mathrm{Cu}=64, \mathrm{~S}=32, \mathrm{O}=16$) (4marks)
c)
i) State Faraday's first law of electrolysis
ii) During purification of copper by electrolysis, 1.48 g of copper were deposited when current was passed through aqueous copper (II) sulphate for $21 / 2$ hours.
Calculate the amount of current used. $\left(\mathrm{Cu}=63 \cdot 5,1\right.$ Faraday $\left.=96500^{\circ} \mathrm{C}\right)$.
(5marks)
d)
i) Graphite and diamond are two allotropes of carbon. In terms of structure and bonding, explain why diamond is hard while graphite is soft.
ii) State two uses of:
I) Diamond
II) Graphite

