

#### **TECHNICAL UNIVERSITY OF MOMBASA**

# FACULTY OF APPLIED AND HEALTH SCIENCES DEPARTMENT OF MATHEMATICS & PHYSICS UNIVERSITY EXAMINATION FOR:

DIPLOMA IN INFORMATION TECHNOLOGY

APS 2103: FUNDAMENTALS OF PHYSICS.

#### END OF SEMESTER EXAMINATION

**SERIES:** AUGUST 2019

**TIME:** 2 HOURS

**DATE:** AUGUST 2019

#### **Instructions to Candidates**

You should have the following for this examination

-Answer Booklet, examination pass and student ID

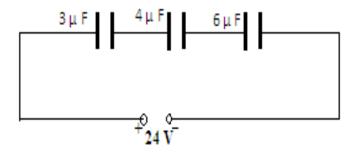
This paper consists of FIVE questions. Attempt question ONE (compulsory) and any other TWO questions.

### Do not write on the question paper.

Take  $g = 10 \text{m/s}^2$ 

 $K_e = 9.00 \times 10^9 \text{Nm}^2/\text{C}^2$ 

# **QUESTION ONE (30MKS)**


a) Differentiate between a dimension and a unit (2mks)

b When a mass is attached to a spring, the acceleration is a = k x/m where a is acceleration, x is a length, m is mass, and k is a spring constant. Find the units of k. (3mks)

- c)A particle moving with a velocity of 20ms<sup>1</sup> is brought to rest in 0.02 s. calculate the acceleration of the body, hence the retardation. (3mks)
- c) A current of 0.5 A flows through a  $10\Omega$  resistor. What is the voltage across the resistor? (3mks)
- d) A generator produces a voltage of 600 V. The primary coil in a transformer has 20 turns. How many secondary turns are needed to step up the voltage to 2400 V? (3mks)

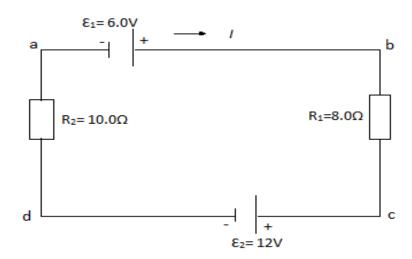
| f) Explain with the aid of a diagram forward bias as used in electronics (31)                                                                 | mks          |
|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| g) Define the following terms                                                                                                                 |              |
| i) Mechanics (11                                                                                                                              | mk)          |
| ii) Acceleration (11                                                                                                                          | mk)          |
| h) Other than temperature state any other <b>two</b> factors that affect the resistance of an Ohmic conductor. (21)                           | mks          |
| i) Calculate the strength and the direction of the electric field E due to a point charge of 2.00 at a distance of 5.00mm from the charge (4) | nC<br>mks    |
| l) Explain the Heating Effect of an electric current (31                                                                                      | mks)         |
| QUESTION TWO (15MKS)                                                                                                                          |              |
| a) p- type and n-type semiconductors are made from a pure semiconductor by a process known as "doping". What is doping? (11)                  | wn<br>mk)    |
| b) Distinguish between intrinsic and extrinsic semiconductors. (21                                                                            | mks          |
| c) Explain how doping produces a p-type semi conductor for pure semi conductor material. (31                                                  | mks)         |
| f)A capacitor is always connected across the output during rectification. Explain its effect on output. (21)                                  | n the<br>mks |
| (i) With a well labelled diagram shows how a junction diode is formed (2r                                                                     | mks          |
| (ii) Explain why a junction diode only conducts in one way (21)                                                                               | mks          |
| c) (i) State what is meant by breakdown voltage for a diode (11                                                                               | mk)          |
| (ii) Name two applications of a junction diode (21)                                                                                           | mks          |
| QUESTION THREE (15MKS)                                                                                                                        |              |
| a)Give any three applications of capacitors (31)                                                                                              | mks          |
| b) Define the term capacitance (1r                                                                                                            | mk)          |

c) Three capacitors of capacitance  $3\mu F$ ,  $4\mu F$  and  $6\mu F$  are connected to a potential difference of 24V as shown below.



- i) The combined capacitance (3mks)
- ii) The total charge (2mks)
- iii)The charge on each capacitor (1mk)
- iv)The voltage across the 4µF capacitor (2mks)
- d) State **three** factors that determine the capacitance of a parallel plate capacitor. (3mks)

# **QUESTION FOUR (15MKS)**


- a)Define electric field and give its SI unit (2mks)
- b) Two point charges are 5.0 m apart. If the charges are 0.020 C and 0.030 C, what is the force between them and is it attractive or repulsive? (4mks)
- c) Calculate the strength of the electric field E due to a point charge Q of 2.00µC at a distance of 50cm from the charge (4mks)
- d) i) Define the term electrostatic potential (1mk)
  - ii) What is the electric potential 5.0m from a point charge  $q = 3.5\mu C$ ? (4mks)

# **QUESTION FIVE (15MKS)**

a) Give the structural features in transformer design which help in achieving high efficiency. (4mks)

b) The primary coil of a transformer has 1200 turns and the secondary coil has 60 turns. The transformer is connected to a 240V a.c source. Determine:

- ii) The output current when the primary coil has a current of 0.5A. (Assume there are no energy losses.) (3mks)
- c) A single loop circuit contains two resistors and two batteries as shown in the figure below. (Neglect the internal resistance of the batteries). Find the current in the circuit. (5mks)

