

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF ELECTRICAL & ELECTRONIC ENGINEERING

UNIVERSITY EXAMINATION FOR:

DIPLOMA IN ELECTRICAL POWER ENGINEERING

EEP2307: HEATING, VENTILATION AND AC & REFRIGERATION

END OF SEMESTER EXAMINATION

SERIES: AUGUST 2019

TIME: 2 HOURS

DATE: AUGUST 2019

Instructions to Candidates

You should have the following for this examination *-Answer Booklet, examination pass and student ID*This paper consists of FIVE questions. Attempt **ANY THREE Questions Do not write on the question paper.**

Question ONE

- a) (i) Explain the procedure of calculating the cooling capacity required for a given room size to be fitted with an air conditioner
 - (ii) Calculate the amount of heat needed in kJ to increase the temperature of 5Kg of water from 15^{0} C to 50^{0} C (12marks)
- b) (i) Explain any THREE possible faults in refrigeration
 (ii)Explain the disadvantages of gas detection avoided by the sensor principle used in the HLD 5000 detector
 (8marks)

Question TWO

- (a) (i) Describe the process of induction heating and give TWO of its merits
 - (ii) A metallic conductor of a resistivity of 1.5x 10^{-5} Ω m and a relative permittivity of 5 is to be heated by induction at a frequency of 40MHz. Determine the:-
 - (I) Depth of penetration
 - (II) Frequency required if the depth of penetration is to be doubled

(12marks)

- (b) (i) With the aid of a diagram explain the principle of operation of dielectric heating
 - (ii) Describe any TWO areas of application of dielectric heating

(8marks)

Question THREE

(a) Explain "ventilation" as applied to industry

(3marks)

- (b) Describe the following techniques and architectural features used to ventilate building and structures
 - (i) Natural ventilation
 - (ii) Demand-controlled ventilation
 - (iii) Local exhaust ventilation

(9marks)

- (c) Explain the following in relation to ventilation
 - (i) Ventilation efficiency
 - (ii) System imbalance
 - (iii) Cross contamination
 - (iv) Re-entry of exhaust air

(8marks)

Question FOUR

- (a) (i) With the aid of a basic refrigeration cycle diagram explain the principles of operation of refrigeration
 - (ii) Explain the following terms used in refrigeration and air-conditioning

I Ton of refrigeration

II Refrigeration effect

(10marks)

- (b) (i) Derive the TWO equations necessary for designing the length and diameter of a circular element used in resistance ovens
- (ii) Calculate the length of nickel chrome wire required to make a circular element for a 16Kw, 240V single phase resistance oven. The temperature is not to exceed 900° C

Take e=0.9, k=0.6, Temperature of charge= 600° C, ρ for nickel chrome= $1.016 \times 10^{-6} \Omega m$. (10marks)

Question FIVE

- a) State with reasons the most appropriate type of electric heating to be applied for each of the following:
 - (i) Surface hardening of metals
 - (ii) Curing of sand cores in foundries

(4marks)

(b) Explain any TWO types of electric welding methods

(6marks)

- (c) (i)Describe the THREE temperature control techniques for resistance ovens
 - (ii) Explain any TWO desirable properties of resistance heating elements

(10marks)