

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF MEDICAL ENGINEERING

UNIVERSITY EXAMINATION FOR:

DIPLOMA IN MEDICAL ENGINEERING

EEP 2251: ELECTRICAL MACHINES & UTILIZATION II

END OF SEMESTER EXAMINATION

SERIES: AUGUST2019

TIME: 2HOURS

DATE: Pick DateAug2019

Instructions to Candidates

You should have the following for this examination *-Examination pass and student ID* This paper consists of **FIVE** questions. Attempt any THREE questions. **Do not write on the question paper.**

QUESTION ONE

a)	Distinguish	between true power and apparent power .	(2marks)		
b)	Describe the 5-wire electrical power distribution system. (2marks)				
c)	A symmetrical 3-phase system supplies a balanced load of 24.9 KVA at a line				
	voltage of 4	15V. Calculate the line current.	(4marks)		
d)	Three 100 Ω resistors are connected first in star and then in delta across 400V, 3-phase lines.				
	Calculate.				
	i)	the line current			
	ii)	the power taken from the supply in each case.	(12 marks)		

QUESTION TWO

- a) Sate
 - i) the need for cover on terminal box of induction motor
 - ii) any **TWO** applications of 3-phase induction motor (3marks)
- b) Describe **windage losses** in 3-phase induction motor. (2marks)
- c) With the aid of a labeled diagram, explain the principle of operation of 3-phase induction (6marks) motor.
- d) The full-load speed of a 6-pole, 3-phase, induction motor, powered from a 50Hz supply, is 956 r.p.m. Calculate
 - the synchronous speed i)
 - ii) the slip speed
 - iii) the percent slip.

QESTION THREE

a) Compare and contrast 3-phase synchronous motor and 3-phase synchronous generator

(3marks)

- b) Explain why the 3-phase synchronous motor is not self -starting. (5marks)
- c) A 3-phase, star-connected alternator has line voltage of 25KV. The output of the a.c. generator is 12MVA at a power-factor of 0.85 lagging. Calculate
 - i) the phase voltage
 - ii) the active power output
 - iii) the line current (12marks)

QUESTION FOUR

- a) State ONE condition to be met for 3-phase transformers to be operated in parallel. (1mark)
- b) With the aid of a labeled diagram, explain the principle of operation of a delta-delta 3-phase transformer. (6marks)

(9marks)

- c) A 3-phase, 50Hz transformer has a delta-connected primary and a star-connected secondary, the line voltage being 22,000V and 400V, respectively. The secondary has a star – connected balanced load at 0.8 power-factor lagging. The line current on the primary side is 5A. Calculate
 - i) the current in the primary winding
 - ii) the current in the secondary winding
 - iii) the true power output of the transformer. (13marks)

QUESTION FIVE

Explain how the availability of electrical machines is affected by

- i) frequency variations
- ii) mechanical load
- iii) single-phasing
- iv) line voltage variations

(20marks)

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF MEDICAL ENGINEERING

UNIVERSITY EXAMINATION FOR:

DIPLOMA IN MEDICAL ENGINEERING

EEP 2251: ELECTRICAL MACHINES & UTILIZATION II

END OF SEMESTER EXAMINATION

SERIES: AUGUST2019

TIME: 2HOURS

DATE: Pick DateAug2019

Instructions to Candidates

You should have the following for this examination *-Examination pass and student ID* This paper consists of **FIVE** questions. Attempt any THREE questions. **Do not write on the question paper.**

QUESTION ONE

a)	Distinguish between apparent power and reactive power.	(2marks)			
b)	Describe the 4-wire electricity distribution system.	(2marks)			
c)	Compare and contrast the 2-wattmeter and 3-wattmeter methods of measuring electrical				
	power in 3-phase systems.	(3marks)			
d)	A balanced load consists of three coils, each of resistance 6 Ω and inductive reactance of				
	Ω , connected first in star and then in delta across a 400V, 3-phase supply. Calculate				
	i) the line current				

ii) the power absorbed by the coils (13marks)

QUESTION TWO

a)	Disting	uish between salient-pole rotor and squirrel –cage rotor	(2marks)			
•••						
b)	5) Compare and contrast induction motor and synchronous motor.					
c)	Explain how the speed of 3-phase induction motor varies with load.					
d)	A 3-phase induction motor is wound for 4-poles and is supplied from a 50Hz system.					
	Calculate.					
	i)	the synchronous speed				
	ii)	the speed of the motor when slip is 4%				
	iii)	the rotor current frequency when the motor runs at 600 r.p.m	(10marks)			
QUESTION THREE						
a)	a) Explain how the 3-phase synchronous motor is affected by					
	i)	loading				
	ii)	excitation	(10marks)			
b)	b) A 3-phase synchronous motor has 12 poles and operates from a 415V, 50Hz supply.					

If it takes a line current of 100A at 0.8 power-factor lead, calculate

- i) the motor speed
- ii) the torque developed by the motor, neglecting losses. (10marks)

QUESTION FOUR

- a) With the aid of a labeled diagram, explain the principle of operation of a star- star, 3-phase transformer. (6marks)
- b) A 3-phase, 50Hz transformer has a delta- connected primary and star- connected secondary, the line voltage being 25,000V and 415V, respectively. The secondary has a star- connected balanced load at 0.8 power-factor lagging. The line current on the primary side is 5A. Calculate
 - i) the current in the primary winding
 - ii) the current in the secondary winding
 - iii) the true power output of the transformer. (14marks)

QUESTION FIVE

A machine, which is driven by an electric motor, has stopped running.

- i) state **FIVE** likely causes for this failure, if the coupling between machine and motor is gear drive.
- ii) Explain the remedial action to be taken to solve this problem. (20marks)