

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF ELECTRICAL & ELECTRONIC ENGINEERING

UNIVERSITY EXAMINATION FOR:

DIPLOMA IN TECHNOLOGY (ELECTRICAL POWER ENGINEERING)(DEPE4)

EEP2206: POWER ELECTRONICS 1.

END OF SEMESTER EXAMINATION

SERIES: AUGUST 2019

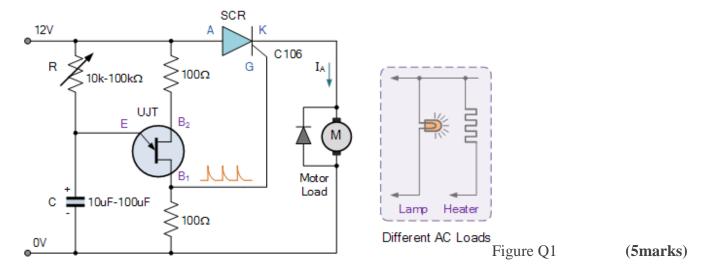
TIME: 2 HOURS

DATE: AUGUST 2019

Instructions to Candidates

You should have the following for this examination

-Answer Booklet, examination pass and student ID


This paper consists of FIVE questions. Attempt ANY THREE Questions

Do not write on the question paper.

Question ONE

QUESTION 1

(a)(i) Explain the operation of figure Q1 circuit

(ii) Show that the expression of output frequency of the firing circuit in figure 1 is given by:-

$$f = \frac{1}{RCln\left(\frac{1}{1-\eta}\right)}$$

where f= frequency of oscillation

 η =intrinsic stand-off ratio

(4marks)

- (iii) The data sheet for a 2N2646 Unijunction transistor gives the intrinsic stand-off ratio η as 0.65. If a 100nF capacitor is used to generator the timing pulses, Calculate the value of the timing resistor required to produce an oscillation frequency of 100Hz. (3marks)
- (b) (i)Draw and explain the characteristics of a UJT
- (ii) The intrinsic stand off ratio for a UJT is determined to be 0.6. If the interbase resistance is $10k\Omega$, Determine the values of:-
 - I. R_{B1}

II. R_{B2}

(8marks)

Question TWO

- (a) Draw the thyristor static characteristics and use it to define the following terms:
 - i. Holding current
 - ii. Forward breakover voltage
- iii. Latching current

(6marks)

- (b)(i) Explain any TWO means of power loss in a thyristor
 - (ii) With the aid of diagrams and waveforms distinguish between integral cycling and phase control (7marks)
- c) With the aid of a circuit and waveform diagrams derive the expression of the mean voltage of a three phase half wave controlled rectifier circuit supplying a resistive load and a firing angle α (7marks)

Question THREE

- (a)(i) State any TWO requirements of firing circuits in thyristor control
 - (ii) Describe any TWO methods of commutation

(6marks)

- (b)(i) Draw and describe the DIAC static characteristics
 - (ii) Explain the operation of the lamp dimmer circuit of figure Q3 below

(10 marks)

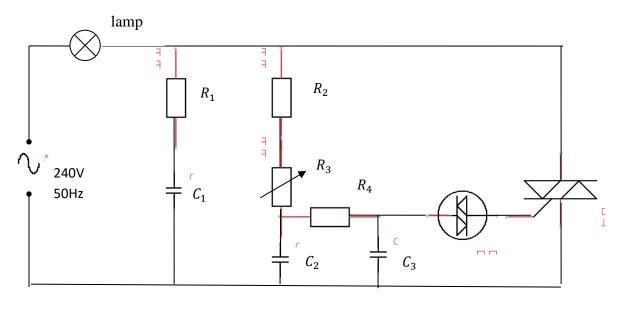


Figure Q3

c) With the aid of a circuit diagram explain any simple method of testing an SCR (4marks)

Question FOUR

- (a)(i) With the aid of a diagram explain how simultaneous firing of two thyristors used in fully controlled rectifier circuit is achieved
- (ii) Show that the mean output voltage for a single phase half wave thyristor controlled rectifier is given as:-

$$V_{mean} = 0.225 V_{r,m,s} (1 + \cos\alpha)$$
 (8marks)

- (b)(i) Derive the mean voltage expression for the circuit of figure Q4
- (ii) The brightness of a 60W,240V lamp of figure Q4 circuit is varied by controlling the firing angle. If the r.m.s value of the a.c voltage appearing across each SCR is 240V, Calculate:-
 - I. $V_{r.m.s}$ in the lamp at 60° firing angle
 - II. $I_{r.m.s}$ in the lamp at 30° firing angle

(7marks)

(5marks)

Question FIVE

- (a)(i) Draw the transistor equivalent circuit of a TRIAC and explain its operation
- (ii) With the aid of a circuit diagram explain how a TRIAC can be used to control the average a.c power to a load. (12 marks)
- (b)(i) Explain the importance of free-wheeling diode in controlled rectification
- (ii) With the aid of a diagram and waveform explain how the speed of a d.c motor can be varied using a thyristor. (8marks)

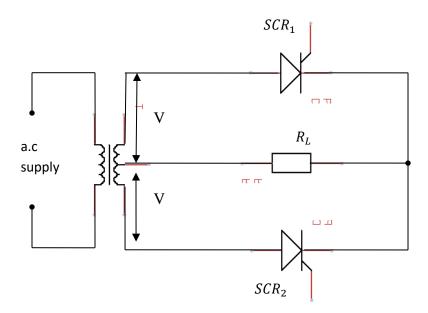


figure Q4: