

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

Faculty of Engineering & Technology

DEPARTMENT OF COMPUTER SCIENCE

HIGHER DIPLOMA IN COMPUTER STUDIES PART I

SEMESTER II EXAMINATIONS APRIL/MAY 2010 SERIES

QUANTITATIVE TECHNIQUE

TIME: 2 HOURS

Instructions to Candidates

Question **ONE** is **Compulsory**. Answer any other **TWO** Questions. SMP Tables and Calculators can be used.

Question ONE

- (a). Explain the following elements of a queuing model.
 - (i). Arrival rate
 - (ii). Queue discipline
 - (iii). Service process
 - (iv). Departure
 - (v). Traffic intensity

(10 Marks)

(b). State and explain any **THREE** components of the total stock holding cost.

(6

Marks)

- (c). Distinguish between the following terms as used in inventory control.
 - (i). Economic Order Quantity. (EOQ)
 - (ii). Economic Batch Quantity.

(4 Marks)

- (d). Describe the following types of simulation.
 - (i). Continuous
 - (ii). Discrete
 - (iii). Analogue

(6 Marks)

(e). State any **FOUR** stages involved in building a simulation run.

(4 Marks)

Question TWO

(a). Outline the steps of Monte Carlo method.

(5 Marks)

(b). The schedule of vehicles arriving at a big garage per day for service was recorded as follows:

Number of	0-6	7-9	10-16	17-19	20-26	27-29	30-36
Vehicles							
Number of Days	9	14	17	22	10	5	3

(i). Using the following random numbers;

9359, 9582, 9900, 1007, 4849, 9522, 6639, 3732, Simulate the number of vehicles arriving at the garage.

(10

Marks)

(ii). Calculate the expected number of vehicles arriving per day.

Question THREE

For one of the chemical produced by a company, the fixed weekly cost is £9,000 and the variable cost per ton is £30. Each ton produced is sold at a price of £60.

- (a). Express total cost, total revenue and total profit in terms of the number of tons produced and sold per week.
- (b). Plot the total cost and total revenue functions in the same graph given $(0 \le \times \le 700)$ tons. Determine the level of output at which break-even occurs.
- (c). Calculate the break-even output level algebraically.
- (d). From the graph in (b) above find the output level which will yield a profit of £6,000 per week. (20 Marks)

Question FOUR

- (a). Define the following terms as used in inventory control system.
 - (i). Order cost
 - (ii). Carrying cost
 - (iii). Zero load time

(6 Marks)

- (b). The yearly requirement of a manufacturer is 1,000 units of a part that is used at a uniform rate throughout the year. The machine set-up cost per lot is Ksh.30,640 while production cost is Ksh.3,900 per unit. Interest, insurance and taxes are estimated at 12% on average inventory. The cost of storing the parts is estimated at Ksh.612 per unit per year.
 - (i). Calculate the economic batch quantity.
 - (ii). Calculate the total stock holding cost.

(14 Marks)

Question FIVE

(a). State any **THREE** queuing situation.

(3 Marks)

(b). Customers arrival at a post office serving counter was found to be at an interval of 4 minutes. The person serving at the counter was serving a customer at a rate of 2 minutes. Evaluate the following:-

- (i). The utilization factor. (2 Marks)
- (ii). What is the probability of a customer arriving and finding at most three customers at the counter. **(6 Marks)**
- (iii). What is the probability of a customer arriving and receive service immediately. (3 Marks)
- (iv). What is the average of customers at the counter who are not being served. (4 Marks)
- (v). What is average time spent by a customer for the whole duration. (2 Marks)