FACULTY OF APPLIED \& HEALTH SCIENCES
DEPARTMENT OF MATHEMATICS \& PHYSICS

UNIVERSITY EXAMINATION 2017/2018

BACHELOR OF SCIENCE IN STATISTICS \& COMPUTER SCIENCE

EEE 4350: DIGITAL ELECTRONICS AND DEVICES SPECIAL/SUPPLEMENTARY EXAMINATION

SERIES: september 2018
TIME: 2 HOURS
DATE: SEPTEMBER 2018

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions. Attempt Question ONE (Compulsory) and any other TWO Questions Do not write on the question paper.

QUESTION 1

(a) Differentiate between combinational and sequential logic circuits and give two examples of each.
(4 marks)
(b) Describe the following terms with respect to logic gates
(i) Fan-in
(ii) Propagation delay time
(iii) Fan-out
(6 marks)
(c) State FOUR advantages of digital systems over analogue ones.
(d) A logic function is given by: $f(A, B)=\sum 2,3$ Show that $f(A, B)=\prod 0,1$
(e) Describe a Half-adder and with the help of a suitable truth table, implement its logic circuit. Explain how a Full-adder can be implemented from a half-adder.
(a) Describe with help of suitable block diagrams the subtraction of two 4-bit binary numbers using Full-subtractors.
(b) Define a decoder. With the help of a Truth table implement a 2-to-4 decoder.
(c) Simplify using Boolean algebra, the following logic expression:

$$
\begin{equation*}
F=\overline{C+\overline{B A}}+\overline{\overline{B+A}}+C \tag{6marks}
\end{equation*}
$$

QUESTION 3

(a) (i) Define a shift register.
(ii) Describe with the help of suitable diagrams the construction and operation of a SIPO Shift register.
(b) State De-Morgan's theorem.
(c) Using Karnaugh mapping, simplify the following logic expressions:

$$
F=\bar{A} \bar{B} \bar{C} D+\bar{A} \bar{B} C D+\bar{A} B \bar{C} D+\bar{A} B C+\bar{A} B C D+A B \bar{C}
$$

QUESTION 4

(a) Define a de-multiplexer. With the help of a suitable logic circuit describe the operation of 1-to-4 de-multiplexer.
(b) Illustrate how 3-input AND gate can be implemented using NAND gates only.
(c) A logic expression is given by $f(A, B, C)=\prod 1,3,8$. Express the logic expression as Sum of products of the three logic variables A, B and C.

QUESTION 5

(a) Describe FIVE major design procedures (in logical order) for combinational logic circuits.
(b) Using J-K flip flops:
(i) Draw the logic circuit of a 2-bit Asynchronous up-counter using J-K flip-flops.
(ii) Sketch timing diagrams at the respective output Q_{A} and Q_{B} for up to 4 clock pulses given that the output from Q_{A} is the least significant bit and that from Q_{B} the most significant bit. Assume initially $\mathrm{Q}_{\mathrm{A}}=\mathrm{Q}_{\mathrm{B}}=1$.
(iii) Draw the truth table for the counter (up to 4 clock pulses)
(c) State how the counter in (b) can be converted to an Asynchronous down-counter.

(8 marks)

(2 marks)

