

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED & HEALTH SCIENCES

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION 2017/2018

BACHELOR OF SCIENCE IN STATISTICS & COMPUTER SCIENCE

EEE 4350: DIGITAL ELECTRONICS AND DEVICES

SPECIAL/SUPPLEMENTARY EXAMINATION

SERIES: SEPTEMBER 2018

TIME: 2 HOURS

DATE: SEPTEMBER 2018

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of FIVE questions. Attempt Question ONE (Compulsory) and any other TWO Questions Do not write on the question paper.

QUESTION 1

(a) Differentiate between combinational and sequential logic circuits and give two examples of each.

(4 marks) (b) Describe the following terms with respect to logic gates

- (i) Fan-in
- (ii) Propagation delay time
- (iii) Fan-out

(6 marks)

(c) State FOUR advantages of digital systems over analogue ones.

(4 marks)

(6 marks)

- (d) A logic function is given by: $f(A, B) = \sum 2.3$ Show that $f(A, B) = \prod 0, 1$
- (e) Describe a Half-adder and with the help of a suitable truth table, implement its logic circuit. Explain how a Full-adder can be implemented from a half-adder. (10 marks)

QUESTION 2

(a)	Describe with help of suitable block diagrams the subtraction of two 4-bit binary numbers using Full-subtractors.	
(b)	Define a decoder. With the help of a Truth table implement a 2-to-4 decoder.	(6 marks)
		(8 marks)
(c)	Simplify using Boolean algebra, the following logic expression:	
	$F = \overline{C + BA} + \overline{B + A} + \overline{C}$	
		(6 marks)
<u>QUES</u>	STION 3	
(a)	(i) Define a shift register.(ii) Describe with the help of suitable diagrams the construction and operation of a SIPO Shift register.	
		(10 marks)
(b)	State De-Morgan's theorem.	(4 marks)
(c)	Using Karnaugh mapping, simplify the following logic expressions:	
	$F = \overline{A} \overline{B} \overline{C} D + \overline{A} \overline{B} CD + \overline{A} B \overline{C} D + \overline{A} B C + \overline{A} B CD + A B \overline{C}$	
		(6 marks)
<u>QUES</u>	STION 4	
(a)	Define a de-multiplexer. With the help of a suitable logic circuit describe the operation of 1-to-4 de-multiplexer.	
(b)	Illustrate how 3-input AND gate can be implemented using NAND gates only.	(12 marks) (6 marks)
(c)	A logic expression is given by $f(A, B, C) = \prod 1, 3, 8$. Express the logic expression as <i>Sum of products</i> of the three logic variables A, B and C.	(2 marks)
<u>QUES</u>	<u>STION 5</u>	
(a)	Describe FIVE major design procedures (in logical order) for combinational logic circuits	
(b)	 Using J-K flip flops: (i) Draw the logic circuit of a 2-bit Asynchronous <i>up-counter</i> using J-K flip-flops. 	(10 marks)
©Tech	nical University of Mombasa Page 2 of 3	2

(ii) Sketch timing diagrams at the respective output Q_A and Q_B for up to 4 clock pulses given that the output from Q_A is the least significant bit and that from Q_B the most significant bit. Assume initially $Q_A=Q_B=1$.

(iii)	Draw the truth table for the counter (up to 4 clock pulses)	
		(8 marks)
(c) State	how the counter in (b) can be converted to an Asynchronous <i>down-counter</i> .	
		(2 marks)