TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF MEDICAL ENGINEERING
UNIVERSITY EXAMINATION FOR:
BACHELOR OF SCIENCE IN MEDICAL ENGINEERING
THIRD YEAR SEMESTER ONE
EEE 4331: ANALOGUE ELECTRONICS III
SPECIAL/SUPPLEMENTARY EXAMINATION
SERIES: SEP 2018
TIME:2HOURS
DATE: SEP 2018

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FOUR questions. Question ONE is COMPULSORY. Attempt any other two questions.
Do not write on the question paper.

Question ONE (COMPULSORY)

a) (i). State the four characteristics of an ideal operational amplifier.
ii) With a aid of Fig $\mathrm{Q} 1(\mathrm{a})$ show that if the loop gain $(\mathrm{A} \beta)$ of a non ideal non inverting amplifier is very large then it's finite open loop gain is given by

$$
\begin{equation*}
A_{V}=1+\frac{R_{2}}{R_{1}} \tag{14mks}
\end{equation*}
$$

Fig Q1(a)
b) (i) State any three sources of power loss in silicon controlled rectifiers
(ii) The SCR of Fig Q1(b) has a gate trigger voltage $V_{T}=0.7 \mathrm{~V}$, gate trigger current $I_{T}=7 \mathrm{~mA}$ and holding current $I_{H}=6 \mathrm{~mA}$. Determine the:
I. output voltage when SCR is off
II. input voltage that triggers the SCR
III. minimum anode voltage that can sustain conduction of SCR

Fig Q1(b)
c) A non inverting amplifier is constructed with $R_{1}=1 \mathrm{k} \Omega, R_{f}=39 \mathrm{k} \Omega$. If the op-amp has an open loop gain of 80 dB and internal output resistance $R_{0}=50 \Omega$. Determine the output resistance of the non inverting amplifier.

Question TWO

a) Design an op-amp circuit that will produce an output voltage equal to $-\left(3 V_{1}+2 V_{2}+0.1 V_{3}\right)$
if its feedback resistance is $100 \mathrm{k} \Omega$. Draw the amplifier circuit.
b) (i) A differential amplifier with common mode input of 500 mV and a difference mode input 30 mV has an output of 5 mV due to common mode input and 3 V due to difference input. Determine the:
I. difference mode gain
II. common mode gain
III. common mode rejection ratio
(ii) With an aid of a diagram derive the expression of the output voltage of an instrumentation amplifier.

Question THREE

a) With an aid of a circuit diagram of a phase shift Oscillator and considering Barkhausen

Criterion, show that oscillations are realized if the transfer function of the oscillator

$$
\begin{equation*}
T_{(j \omega 0)}=\frac{R_{1}}{12 R} \text { at the point when } R_{1}=12 \mathrm{R} \tag{14mks}
\end{equation*}
$$

b) Draw an equivalent circuit diagram of silicon bilateral switch hence describe its operation.

Question FOUR

(a) With an aid of a diagram and waveforms show that the mean voltage of a half wave controlled rectifier with resistive load is given by:

$$
\begin{equation*}
V_{d c}=\frac{V_{\max }}{2 \pi}(1+\cos \theta) \tag{8mks}
\end{equation*}
$$

(b) With an aid of Fig 4Q(b) show that the input resistance of a non ideal inverting amplifier is given by $R_{i n}=R_{1}+\frac{R_{2}}{1+A}$

Fig Q4(b)

